# HDU 2890 Longest Repeated subsequence

Description

Write a program that takes a sequence of number and returns length of the longest repeated
subsequence. A repeated subsequence which repeats identically at least K times without overlaps.
For example 1 2 3 1 2 3 2 3 1 repeats 2 3 for three times.

Input

Line 1: The input contains a single integer T , the number of test cases.
Line 2: Two space-separated integers: N and K (1 <= n <= 50000), (2 <= k <= n)
Lines 3..N+2: N integers, one per line. The integer is between 0 and 10^9.
It is guaranteed that at least one subsequence is repeated at least K times.

Output

For each test case, the first line print the length n of the Longest Repeated Subsequence and the line 2…n+1 print the subsequence numbers.(if we have several subsequence with the same length output the lexicographic order smallest one). Separate output for adjacent cases with a single blank line.

Sample Input

1
8 2
1
2
3
2
3
2
3
1

Sample Output

2
2


3

#include<set>
#include<map>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<bitset>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#define rep(i,j,k) for (int i = j; i <= k; i++)
#define per(i,j,k) for (int i = j; i >= k; i--)
#define loop(i,j,k) for (int i = j;i != -1; i = k[i])
#define lson x << 1, l, mid
#define rson x << 1 | 1, mid + 1, r
#define fi first
#define se second
#define mp(i,j) make_pair(i,j)
#define pii pair<string,string>
using namespace std;
typedef long long LL;
const int low(int x) { return x&-x; }
const double eps = 1e-8;
const int INF = 0x7FFFFFFF;
const int mod = 1e8;
const int N = 3e5 + 10;
{
char ch = getchar();
while (ch<'0' || ch>'9') ch = getchar();
int x = ch - '0';
while ((ch = getchar()) >= '0'&&ch <= '9') x = x * 10 + ch - '0';
return x;
}
int T, cas = 0;

struct Sa
{
int s[N], a[N], b[N];
int rk[2][N], sa[N], h[N], w[N], now, n, m, K;
//int rmq[N][20], lg[N];

bool GetS()
{
scanf("%d%d", &n, &K);
rep(i, 1, n) scanf("%d", &a[i]), s[i] = a[i];
sort(a + 1, a + n + 1);
m = unique(a + 1, a + n + 1) - a;
rep(i, 1, n) s[i] = lower_bound(a + 1, a + m, s[i]) - a;
return true;
}

void getsa(int z, int &m)
{
int x = now, y = now ^= 1;
rep(i, 1, z) rk[y][i] = n - i + 1;
for (int i = 1, j = z; i <= n; i++)
if (sa[i] > z) rk[y][++j] = sa[i] - z;

rep(i, 1, m) w[i] = 0;
rep(i, 1, n) w[rk[x][rk[y][i]]]++;
rep(i, 1, m) w[i] += w[i - 1];
per(i, n, 1) sa[w[rk[x][rk[y][i]]]--] = rk[y][i];
for (int i = m = 1; i <= n; i++)
{
int *a = rk[x] + sa[i], *b = rk[x] + sa[i - 1];
rk[y][sa[i]] = *a == *b&&*(a + z) == *(b + z) ? m - 1 : m++;
}
}

void getsa(int m)
{
//n = strlen(s + 1);
rk[1][0] = now = sa[0] = s[0] = 0;
rep(i, 1, m) w[i] = 0;
rep(i, 1, n) w[s[i]]++;
rep(i, 1, m) rk[1][i] = rk[1][i - 1] + (bool)w[i];
rep(i, 1, m) w[i] += w[i - 1];
rep(i, 1, n) rk[0][i] = rk[1][s[i]];
rep(i, 1, n) sa[w[s[i]]--] = i;

rk[1][n + 1] = rk[0][n + 1] = 0;	//多组的时候容易出bug
for (int x = 1, y = rk[1][m]; x <= n && y <= n; x <<= 1) getsa(x, y);
for (int i = 1, j = 0; i <= n; h[rk[now][i++]] = j ? j-- : j)
{
if (rk[now][i] == 1) continue;
int k = n - max(sa[rk[now][i] - 1], i);
while (j <= k && s[sa[rk[now][i] - 1] + j] == s[i + j]) ++j;
}
}

/*void getrmq()
{
h[n + 1] = h[1] = lg[1] = 0;
rep(i, 2, n) rmq[i][0] = h[i], lg[i] = lg[i >> 1] + 1;
for (int i = 1; (1 << i) <= n; i++)
{
rep(j, 2, n)
{
if (j + (1 << i) > n + 1) break;
rmq[j][i] = min(rmq[j][i - 1], rmq[j + (1 << i - 1)][i - 1]);
}
}
}

int lcp(int x, int y)
{
int l = min(rk[now][x], rk[now][y]) + 1, r = max(rk[now][x], rk[now][y]);
return min(rmq[l][lg[r - l + 1]], rmq[r - (1 << lg[r - l + 1]) + 1][lg[r - l + 1]]);
}
*/

bool check(int x, int &y)
{
int tot = 0;
b[tot++] = sa[1];
for (int i = 2; i <= n + 1; i++)
{
if (i <= n&&h[i] >= x) b[tot++] = sa[i];
else
{
sort(b, b + tot);
int now = -INF, cnt = 0;
rep(k, 0, tot - 1) if (b[k] >= now + x) now = b[k], cnt++;
if (cnt >= K) { y = sa[i - 1]; return true; }
tot = 0; b[tot++] = sa[i];
}
}
return false;
}

void work()
{
GetS();	getsa(m);
int l = 1, r = n, g;
while (l <= r)
{
if (check(l + r >> 1, g)) l = (l + r >> 1) + 1;
else r = (l + r >> 1) - 1;
}
check(r, g);
printf("%d\n", r);
rep(i, 1, r) printf("%d\n", a[s[g + i - 1]]);
}
}sa;

int main()
{
while (T--)
{
sa.work();
if (T) printf("\n");
}
return 0;
}

• 本文已收录于以下专栏：

举报原因： 您举报文章：HDU 2890 Longest Repeated subsequence 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)