Given n non-negative integers
, We define a statistical function as follows:
It will be noted that the nature of F(k) is calculated with the number of choices, such that:
1)0≤b i≤a i,0≤i≤n-1,b i is a integer.
2)b 0 xor b 1 xor ... xor b n-1 = k,xor means exclusive-or operation.
Now given A and m operations, there are two different operations:
1)C x y: set the value of ax to y;
2)Q x: calculate F(x) mod P, where P = 1000000007.
It will be noted that the nature of F(k) is calculated with the number of choices, such that:
1)0≤b i≤a i,0≤i≤n-1,b i is a integer.
2)b 0 xor b 1 xor ... xor b n-1 = k,xor means exclusive-or operation.
Now given A and m operations, there are two different operations:
1)C x y: set the value of ax to y;
2)Q x: calculate F(x) mod P, where P = 1000000007.
For each test case, the first line contains tow integers n, m, (1≤n, m≤20000), denote the n, m that appear in the above description. Then next line contains n non-negative integers denote
Then next m lines. Each line is one of the follow two:
1)C x y: set the value of a x to y;(0≤x≤n-1,0≤y≤1000)
2)Q x: calculate F(x) mod P, where P = 1000000007.
The number of the first operation is not more than 5000.
1 2 5 3 2 Q 3 C 0 2 Q 3 Q 0 C 0 3
3 23
修改和询问的操作,显然可以联想到线段树,问题是如何处理复杂的数据。
考虑到结果肯定很大,并且ai很小,用状态压缩的思想,先把ai转成2进制,
像数位dp一样,把ai差分成不同的长度的前缀01串,以可能出现的最大数字1023
为例,可以被拆成:
1111111111
1111111110
111111110X
11111110XX
1111110XXX
...
0XXXXXXXXX
X代表了01任选,显然,每个数字被拆分成的状态数等于其二进制1的个数。
于是把状态和数量插入线段树中,合并的时候采用暴力的双循环,再排个序判断重复即可。
至于复杂度,根据题解的说法,可以证明最后的状态数不会太多,并且修改操作小于5000,所以没问题。
#include<map> #include<ctime> #include<cmath> #include<queue> #include<string> #include<vector> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<functional> using namespace std; #define ms(x,y) memset(x,y,sizeof(x)) #define rep(i,j,k) for(int i=j;i<=k;i++) #define per(i,j,k) for(int i=j;i>=k;i--) #define loop(i,j,k) for (int i=j;i!=-1;i=k[i]) #define inone(x) scanf("%d",&x) #define intwo(x,y) scanf("%d%d",&x,&y) #define inthr(x,y,z) scanf("%d%d%d",&x,&y,&z) #define infou(x,y,z,p) scanf("%d%d%d%d",&x,&y,&z,&p) #define lson x<<1,l,mid #define rson x<<1|1,mid+1,r #define mp(i,j) make_pair(i,j) #define ft first #define sd second typedef long long LL; typedef pair<int, int> pii; const int low(int x) { return x&-x; } const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int N = 1e5 + 10; const int M = 5e6; const double eps = 1e-10; int T, n, m, a[N], x, y; vector<pair<pii, int>> f[N], g; char s[N]; void get(int x, int y) { f[x].clear(); f[x].push_back(mp(mp(y, 10), 1)); for (int i = y; i; i -= low(i)) { f[x].push_back(mp(mp(i - low(i), 10 - log(low(i)) / log(2)), low(i))); } } bool cmp(pair<pii, int>a, pair<pii, int>b) { return a.ft < b.ft; } void merge(int x, int l, int r) { f[x].clear(); g.clear(); for (auto i : f[l]) for (auto j : f[r]) { int k = i.ft.ft^j.ft.ft, L = min(i.ft.sd, j.ft.sd); k = (k >> (10 - L)) << (10 - L); g.push_back(mp(mp(k, L), 1LL * i.sd*j.sd%mod)); } sort(g.begin(), g.end(), cmp); for (int i = 0, j; i < g.size(); i = j) { pair<pii, int> q = mp(g[i].ft, 0); for (j = i; j < g.size() && g[i].ft == g[j].ft; j++) { (q.sd += g[j].sd) %= mod; } f[x].push_back(q); } } void build(int x, int l, int r) { if (l == r) { get(x, a[r]); return; } int mid = l + r >> 1; build(lson); build(rson); merge(x, x << 1, x << 1 | 1); } void change(int x, int l, int r, int u) { if (l == r) { get(x, a[r]); return; } int mid = l + r >> 1; if (u <= mid) change(lson, u); else change(rson, u); merge(x, x << 1, x << 1 | 1); } int inv(int x) { return x == 1 ? 1 : 1LL * inv(mod%x)*(mod - mod / x) % mod; } int main() { for (inone(T); T; T--) { intwo(n, m); rep(i, 1, n) inone(a[i]); build(1, 1, n); while (m--) { scanf("%s", s); if (s[0] == 'C') { inone(x); ++x; inone(a[x]); change(1, 1, n, x); } else { inone(x); int ans = 0; for (auto i : f[1]) { if ((i.ft.ft^x) >> (10 - i.ft.sd)) continue; (ans += 1LL * i.sd * inv(1 << (10 - i.ft.sd)) % mod) %= mod; } printf("%d\n", ans); } } } return 0; }