HDU 4867 Xor

Given n non-negative integers  , We define a statistical function as follows: 

It will be noted that the nature of F(k) is calculated with the number of choices, such that: 
1)0≤b  i≤a  i,0≤i≤n-1,b  i is a integer. 
2)b  0 xor b  1 xor ... xor b  n-1 = k,xor means exclusive-or operation.   
Now given A and m operations, there are two different operations: 
1)C x y: set the value of ax to y; 
 2)Q x: calculate F(x) mod P, where P = 1000000007.
Input
The first line has a number T (T ≤ 10), indicating the number of test cases. 
For each test case, the first line contains tow integers n, m, (1≤n, m≤20000), denote the n, m that appear in the above description. Then next line contains n non-negative integers denote 
(0≤a  i≤1000). 
Then next m lines. Each line is one of the follow two: 
1)C x y: set the value of a  x to y;(0≤x≤n-1,0≤y≤1000) 
2)Q x: calculate F(x) mod P, where P = 1000000007. 
 The number of the first operation is not more than 5000.
Output
For each Q operation, output the value of F(x) mod P.
Sample Input
1
2 5
3 2
Q 3
C 0 2
Q 3
Q 0
C 0 3
Sample Output
3
2

3

修改和询问的操作,显然可以联想到线段树,问题是如何处理复杂的数据。

考虑到结果肯定很大,并且ai很小,用状态压缩的思想,先把ai转成2进制,

像数位dp一样,把ai差分成不同的长度的前缀01串,以可能出现的最大数字1023

为例,可以被拆成:

1111111111

1111111110

111111110X

11111110XX

1111110XXX

...

0XXXXXXXXX

X代表了01任选,显然,每个数字被拆分成的状态数等于其二进制1的个数。

于是把状态和数量插入线段树中,合并的时候采用暴力的双循环,再排个序判断重复即可。

至于复杂度,根据题解的说法,可以证明最后的状态数不会太多,并且修改操作小于5000,所以没问题。

#include<map>
#include<ctime>
#include<cmath>    
#include<queue> 
#include<string>
#include<vector>
#include<cstdio>    
#include<cstring>  
#include<iostream>
#include<algorithm>    
#include<functional>
using namespace std;
#define ms(x,y) memset(x,y,sizeof(x))    
#define rep(i,j,k) for(int i=j;i<=k;i++)    
#define per(i,j,k) for(int i=j;i>=k;i--)    
#define loop(i,j,k) for (int i=j;i!=-1;i=k[i])    
#define inone(x) scanf("%d",&x)    
#define intwo(x,y) scanf("%d%d",&x,&y)    
#define inthr(x,y,z) scanf("%d%d%d",&x,&y,&z)  
#define infou(x,y,z,p) scanf("%d%d%d%d",&x,&y,&z,&p) 
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define mp(i,j) make_pair(i,j)
#define ft first
#define sd second
typedef long long LL;
typedef pair<int, int> pii;
const int low(int x) { return x&-x; }
const int INF = 0x7FFFFFFF;
const int mod = 1e9 + 7;
const int N = 1e5 + 10;
const int M = 5e6;
const double eps = 1e-10;
int T, n, m, a[N], x, y;
vector<pair<pii, int>> f[N], g;
char s[N];

void get(int x, int y)
{
	f[x].clear();
	f[x].push_back(mp(mp(y, 10), 1));
	for (int i = y; i; i -= low(i))
	{
		f[x].push_back(mp(mp(i - low(i), 10 - log(low(i)) / log(2)), low(i)));
	}
}

bool cmp(pair<pii, int>a, pair<pii, int>b)
{
	return a.ft < b.ft;
}

void merge(int x, int l, int r)
{
	f[x].clear(); g.clear();
	for (auto i : f[l]) for (auto j : f[r])
	{
		int k = i.ft.ft^j.ft.ft, L = min(i.ft.sd, j.ft.sd);
		k = (k >> (10 - L)) << (10 - L);
		g.push_back(mp(mp(k, L), 1LL * i.sd*j.sd%mod));
	}
	sort(g.begin(), g.end(), cmp);
	for (int i = 0, j; i < g.size(); i = j)
	{
		pair<pii, int> q = mp(g[i].ft, 0);
		for (j = i; j < g.size() && g[i].ft == g[j].ft; j++)
		{
			(q.sd += g[j].sd) %= mod;
		}
		f[x].push_back(q);
	}
}

void build(int x, int l, int r)
{
	if (l == r) { get(x, a[r]); return; }
	int mid = l + r >> 1;
	build(lson); build(rson);
	merge(x, x << 1, x << 1 | 1);
}

void change(int x, int l, int r, int u)
{
	if (l == r) { get(x, a[r]); return; }
	int mid = l + r >> 1;
	if (u <= mid) change(lson, u); else change(rson, u);
	merge(x, x << 1, x << 1 | 1);
}

int inv(int x) { return x == 1 ? 1 : 1LL * inv(mod%x)*(mod - mod / x) % mod; }

int main()
{
	for (inone(T); T; T--)
	{
		intwo(n, m);
		rep(i, 1, n) inone(a[i]);
		build(1, 1, n);
		while (m--)
		{
			scanf("%s", s);
			if (s[0] == 'C')
			{
				inone(x); ++x;
				inone(a[x]);
				change(1, 1, n, x);
			}
			else
			{
				inone(x);
				int ans = 0;
				for (auto i : f[1])
				{
					if ((i.ft.ft^x) >> (10 - i.ft.sd)) continue;
					(ans += 1LL * i.sd * inv(1 << (10 - i.ft.sd)) % mod) %= mod;
				}
				printf("%d\n", ans);
			}
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值