题目大意
大体思路
暴力肯定不行,那么我们考虑优化。但是似乎公式优化也不行啊 qwq。
那么联系 n n n 的数据范围,我们就需要一个 O ( 1 ) O(1) O(1) 的算法,于是我们尝试从中间找找规律吧。
我们知道,只有 0 0 0 和 1 1 1 异或起来最终才得到 1 1 1,那么对于每一位(二进制),我们得尽量保持出现的 1 1 1 的个数在总共数的个数(也就是 l l l)的一半左右,效果是最佳的。如果你听不懂,可以看看题目下面的样例解析,把它给的数以二进制从上到下排列,看看每一位 1 1 1 的个数是不是在 l ÷ 2 l \div 2 l÷2 左右呢?
现在还有一个问题:二进制最多一共有多少位?很简单,就是 log ( n ) \log(n) log(n)。因此,我们可以定义一个 n o w now now 变量,从 2 40 ( > 1 0 12 ) 2^{40}(>10^{12}) 240(>1012) 开始,每次除以 2 2 2,直到小于 n n n 为止,每一次累计答案即可。
每次累加的答案就是 n o w × ( l ÷ 2 ) × ( l − l ÷ 2 ) now × (l \div 2) × (l - l \div 2) now×(l÷2)×(l−l÷2)。具体大佬们就参照一下别的题解吧,我不细讲了。
代码如下:
#include <bits/stdc++.h>
using namespace std;
#define int unsigned long long
const int mod = 1000000007;
int T, n, l;
inline int read() {
int x = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') f = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9') { x = (x << 1) + (x << 3) + (ch ^ 48); ch = getchar(); }
return x * f;
}
signed main() {
T = read();
while(T--) {
n = read(), l = read();
if(n == 1) { printf("0\n"); continue; }
int now = (1ull << 40), t = l / 2, ans = 0;
while(now > 0) {
now >>= 1;
if(n < now) continue;
ans += now * t * (l - t);
}
printf("%lld\n", ans % mod);
}
return 0;
}