Training free Transformer Architecture Search

TF-TAS是一种通过ZeroShotNAS在不进行训练的情况下搜索ViT结构的方法。研究分析了MSA和MLP结构,发现MSA的突触多样性和MLP的权重敏感性是关键指标。DSS-indicator结合两者,用于高效搜索。实验显示,这种方法能大幅提升搜索效率,同时保持模型的高性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章简称为TF-TAS, 首次通过Zero Shot NAS方式实现 ViT (Vision Transformer) 结构搜索。

文章作者来自腾讯优图、厦门大学、鹏城实验室等机构,是2022年CVPR的一篇oral论文。

 CVPR原论文:https://openaccess.thecvf.com/content/CVPR2022/html/Zhou_Training-Free_Transformer_Architecture_Search_CVPR_2022_paper.html

开源代码:https://github.com/decemberzhou/TF_TAS


目录

研究背景

本文方法

MSA结构分析

MLP结构分析

DSS-indicator

实验验证

数据集

搜索阶段

重新训练阶段


研究背景

ViT 已经在CV和NLP领域展现出了很优越的性能,但其性能和算力等仍然与模型结构息息相关,因此,研究人员们通过自动搜索的手段去寻找更好的ViT。

在此之前已经有一些通过NAS (Neural Architecture Search)的方式去搜索到性能表现更佳的ViT结构,但是仍然存在以下几方面问题:

  • 模型搜索非常耗时,搜索效率不高
  • 由于ViT网络结构与CNN的结构存在较大差异,导致上述方法无法直接移植到ViT结构到高效搜索中;
  • 因此,有必要研究针对ViT高效搜索的zero-cost scor
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值