【leetcode】215. Kth Largest Element in an Array

本文介绍了求解无序数组中第K大元素的三种高效算法:直接排序、最大堆和快速排序(分治)。详细解析了每种方法的实现思路、时间复杂度及空间复杂度,并附带代码示例。

【leetcode】215. Kth Largest Element in an Array

Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.

For example,
Given [3,2,1,5,6,4] and k = 2, return 5.

Note:
You may assume k is always valid, 1 ≤ k ≤ array’s length.

题目:从一个无序的数组里面找出第K大的元素。当K=1,时,第K大的元素就是数组中最大的元素;K=2时,就是找出数组中第二大的元素。

我想到了三种方法:直接排序,最大堆和快速排序(分治)。

方法一:排序

最简单的方法就是先对数组排序,然后直接返回第n-k个元素。这种方法的时间复杂度为O(nlogn)(排序),空间复杂度为O(1) (通过下标索引元素)。

// sort
int findKthLargest(vector<int>& nums, int k) {
    sort(nums.begin(), nums.end());
    return nums[nums.size()-k];

}

Rumtime: 9ms

方法二:最大堆

第一种方法对所有元素排序后取出第K大的元素,但是其实没有必要对所有元素排序,因为我们只关心第K大的元素,因此可以使用最大堆:对所有元素建立最大堆,保证堆顶的元素最大,再删除k-1个元素后,此时堆顶的元素就是第K大的元素了。这种方法的时间复杂度为O(n log n), 空间复杂度为O(n).

// max heap: make a max heap with all elements, then pop k-1 elements
int findKthLargest(vector<int>& nums, int k) {

    priority_queue<int> max_heap (nums.begin(), nums.end());
    for (int i = 0; i < k-1; ++i)
    {
        max_heap.pop();
    }
    return max_heap.top();
}

Runtime: 9 ms

方法二(2):最小堆

使用最大堆需要对所有元素排序,这样花费了时间和空间,因此可以转换一下思想,使用最小堆:先对数组中的前k个元素建立最小堆,然后依次遍历剩下的元素,当元素大于堆顶的元素时,将堆顶元素弹出,插入这个新的元素。这样到最后的最小堆中的就是k个最大的元素,堆顶的元素就是第k大的元素。这样可以将时间复杂度将为O(nlogk), 空间复杂度降为O(k)

int findKthLargest(vector<int>& nums, int k) {

    priority_queue<int, vector<int>, greater<int> > min_heap (nums.begin(), nums.begin()+k);
    for (int i = k; i < nums.size(); ++i)
    {
        if (nums[i] > min_heap.top()) {
            min_heap.pop();
            min_heap.push(nums[i]);
        }
    }
    return min_heap.top();
}

方法三:快速排序(分治)

但是这道题目的tag标为divide-and-conquer,就说明可以使用分治的思想来实现。寻找第k大的元素,其实就是寻找第n-k+1小的元素,那么我们可以采用快速选择(Quick Select)的方法:随机寻找一个pivot,将小于pivot的元素放在左边,大于pivot的元素放在右边。partion后,pivot左边的元素都小于pivot,右边的元素都大于pivot。那么假设pivot对应的下标为i,如果i==n-k+1,那么pivot就是要找的第K大的元素;如果i < n-k+1,说明需要找的元素在pivot的右边。这种方法的时间复杂度为O(nlogn)。

// divide-and-conquer: quick-sort
int findKthLargest(vector<int>& nums, int k) {

    int index = quickSelec(nums, 0, nums.size()-1, nums.size()-k+1);
    return nums[index];
}


int quickSelec(vector<int>& a, int low, int high, int k) {

    int l = low, h = high, pivot = a[high];
    while(l < h) {
        if (a[l++] > pivot) swap(a[--l], a[--h]);
    }
    swap(a[l], a[high]);

    int cnt_small = l - low + 1; // count nums that are <= pivot

    // pivot is the target
    if (cnt_small == k) return l;
    // pivot is too big, so target in left
    else if (cnt_small > k) return quickSelec(a, low, l-1, k);
    // pivot is too small, so target in right
    else return quickSelec(a, l+1, high, k-cnt_small);
}
### 关于LeetCode215题的描述 LeetCode215题名为 **Kth Largest Element in an Array**,其问题是要求在一个无序数组中找到第k大的元素。需要注意的是,这里的“第k大”是指按照降序排列后的第k个位置上的数。 #### 解决方案概述 一种常见的解决方法是利用堆排序算法来实现这一目标。通过构建一个小顶堆(Min Heap),可以有效地获取到所需的第k大元素。这种方法的时间复杂度通常为 \(O(n \log k)\),其中 n 是数组长度,而 k 则是我们要找的目标次序[^4]。 以下是基于 Python 的解决方案代码: ```python import heapq def findKthLargest(nums, k): # 使用heapq模块中的nlargest函数直接找出前k大的数并返回最后一个即为我们想要的结果 return heapq.nlargest(k, nums)[-1] # 测试样例 nums = [3, 2, 1, 5, 6, 4] k = 2 print(findKthLargest(nums, k)) # 输出应为5 ``` 此段代码借助了 `heapq` 库里的 `nlargest` 方法简化操作流程,从而达到快速定位的目的[^5]。 另外还有一种方式就是先对整个列表完成全面排序之后再选取相应索引处数值作为最终答案;不过这种做法虽然直观却可能带来不必要的计算负担,在性能上未必优于上述提到过的最小堆策略。 ### 提供更高效的解答思路 除了运用内置库外还可以手动创建最大堆(MaxHeap), 并持续移除顶部直到剩下最后那个代表所需值为止; 或者采用分治法(Divide And Conquer Approach)像快速选择(Quickselect Algorithm)那样只关注局部区域进而减少整体迭代次数以提高效率至平均情况下的线性时间复杂度 O(N)[^6].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值