小星学DSA丨一文学完红黑树(简明教程)

这是小星学DSA系列的第一篇,我会记录我学习的过程与理解,希望能够帮到你。

本篇文章的思维导图如下,在文章的末尾,我会给出更加详细的思维导图。

在这里插入图片描述

红黑树的定义

红黑树的概念与性质

  • 红黑树是一棵节点为黑色或红色的二叉搜索树;
  • 性质1:根节点与外部节点(叶子节点的空子节点)为黑色
  • 性质2:从根节点到外部节点的路径上,不能有两个连续的红色节点
  • 性质3:从根节点到外部节点的路径上,黑色节点的数目相同

💫 小星说丨一句话概括红黑树性质:头尾黑,红红不相连,黑节点数目相等

红黑树的复杂度及证明

  • 红黑树的空间复杂度为O(n)
  • 红黑树的时间复杂度为: O(lgn)

证明红黑树的时间复杂度

  1. 等价命题:一棵含有n个节点的红黑树的高度至多为2log(n+1)
  2. 逆否命题:高度为h的红黑树,其节点至少为 2 h / 2 − 1 2^{h/2}-1 2h/21
  3. 设节点x路径中黑节点的数量为bh(x),则上述命题为:高度为h的红黑树,其黑节点至少为 2 b h ( x ) − 1 2^{bh(x)}-1 2bh(x)1
  4. 数学归纳法证明:
    1. h = 0, 易证
    2. 假设h=H-1时等式成立,则h=H时,根节点的两个子节点高度均为H-1,则根节点的黑节点数量至少为 2 ∗ 2 b h ( r o o t . c h i l d ) − 2 + 1 = 2 b h ( r o o t ) − 1 2*2^{bh(root.child)}-2+1=2^{bh{(root)}}-1 22bh(root.child)2+1=2bh(root)1,等式成立

💫 小星说丨用高度推节点数地计算和理解更容易

红黑树的操作

红黑树的作为树的基本操作:查找、插入、删除

为了维护红黑树性质需要的操作:左旋、右旋

红黑树的左旋与右旋

左旋

左旋即被旋转的节点(根节点)变为了右节点的左子节点,右节点代替了它的位置,而右节点原先的左子节点则变为了被旋转节点的右节点

在这里插入图片描述

右旋

右旋即被旋转的节点(根节点)变为了左节点的右子节点,左节点代替了它的位置,而左节点原先的右子节点则变为了被旋转节点的左节点

在这里插入图片描述

💫 小星说丨左旋:被左旋的节点变为左子节点;右旋:被右旋的节点变为右子节点。想象被旋转的节点是一个跷跷板的支点,左旋即把右节点翘上去,右旋即把左节点翘上去,多出来的节点由支点接住。

红黑树的查找

在查找上,红黑树与普通的二叉搜索树完全一样,不一样的点在于红黑树的查找复杂度为O(lgn)。

二叉搜索树的查找非常简单,只要将查找值与当前节点的值比较,大则向右找,小则向左找,这里不再赘述。

红黑树的插入

红黑树的插入总共三步:

  1. 将红黑树当作二叉查找树,插入节点;
  2. 将插入的节点着色为红色;
  3. 通过旋转着色,使之重新成为一颗红黑树。

接下来我们详细说明一下这三步:

插入二叉查找树

首先我们不考虑颜色,而是根据二叉查找树的性质,找到红黑树的插入点。

我们用一个节点指针遍历二叉树,反复与节点比较,大则向右,小则向左,直到到达null;

插入节点着色为红色

为了在插入时不破坏红黑树的性质3(从根节点到外部节点的路径上,黑色节点的数目相同),我们将该节点着色为红色,接下来,只要解决红-红冲突,便能完成插入。

插入修正

💫 小星说丨一句话理解红黑树的插入修正:红色矛盾向上转移,直到移到根节点变为黑色。因为矛盾要向上转移,因此我们需要考虑上一层长辈节点的状态,即父节点与叔叔节点。

这里,我给插入修正的情况做了一个总结表

当前节点父节点叔叔节点当前节点与父亲节点的偏向操作
根节点染黑
无需修正
父节点和叔叔节点变黑,祖父节点变红,开始解决祖父节点可能存在的矛盾
不一致当前节点通过左旋或右旋成为原父节点的父节点,使二者朝向一致,此时将原父节点当作当前节点,再次判断当前节点状态。
一致父节点通过左旋或右旋成为原祖父节点的父节点,父节点变为黑色,原祖父节点变为红色

可以这样理解红黑树插入修正的逻辑:

  1. 父亲红,叔叔红,那么就交换父亲层和祖父层的颜色,将红色矛盾向上转移至祖父,而父亲和叔叔这一层可以变为黑色;
  2. 父亲红,叔叔黑,由于性质3的限制,不能直接交换(下一层需要两个变黑才能换上一层一个变红),为了只变父亲这边不变叔叔那边,于是使用左旋或右旋来交换父亲和祖父的颜色;
  3. 旋转时要保持当前节点和父亲节点的父子关系,所以要求偏向一致。

💫 小星说丨红黑树插入修正达到以下三种情况,即为最终情况,可以彻底解决矛盾,其他的操作是为了达到这三种状态。

  1. 当前节点为根节点
  2. 当前节点的父节点为黑色
  3. 双红偏向一致,叔叔黑色

在这里插入图片描述

红黑树的删除

红黑树的删除同样是三步:

  1. 将红黑树当作二叉搜索树,找到需要删除的节点
  2. 使用恰当的节点值代替该删除节点,并将矛盾转移到代替节点
  3. 删除代替节点,并根据代替节点的情况,旋转着色使之重新成为一颗红黑树

看起来比插入要复杂一些,这是因为插入的地方肯定为叶子节点,而删除的地方则不一定,因此我们需要将删除的矛盾转移至叶子节点,然后再来解决红黑树的矛盾。

从二叉搜索树找到需要删除的节点

利用二叉搜索树的查找方法,找到该节点

找到代替节点

找到删除节点后,我们需要明确,删除节点的位置是否可以空置,如果不空置,是否需要找一个替代节点,而替代节点又如何解决?

这里有三种情况

  1. 被删除节点为叶子节点,由于它已经是叶子节点,因此这个地方可以为空,也即节点可以直接删除。

在这里插入图片描述

  1. 被删除的节点有一个子节点,那么我们就用这个子节点代替这个节点的位置,而将子节点删除,由于红黑树的的性质3限制,这个子节点肯定是一个叶子节点。

在这里插入图片描述

  1. 被删除的节点有两个子节点,那么我们就找到该节点的后继节点(右子树的最左节点),用后继节点代替这个节点的位置,而将后继节点删除,后继节点也必定为一个叶子节点

在这里插入图片描述

删除修正

经过第二步,我们将删除指定节点的任务,都转化为了删除一个叶子节点的任务,接下来,我们需要根据这个叶子节点的状态,通过旋转着色维护红黑树的性质。

💫 小星说丨一句话总结红黑树的删除修正:父节点下放弥补双黑,兄弟相应调整。这里主要影响到的是兄弟节点和侄子节点

以下两种情况,可以直接删除该节点,用一个外部节点代替其位置

当前节点兄弟节点侄子节点操作
根节点直接删除
红色直接删除

以下几种情况,为了维护性质3,我们在用外部节点代替该节点时,将该外部节点标记为双黑(DB,double black)

当前节点兄弟节点侄子节点操作
DB红色父亲节点与兄弟节点颜色互换,且父亲节点向DB方向旋转,此时再重新判断DB状态。
DB黑色黑色当前节点变为单黒,兄弟节点变为红色,父亲节点加一个黑色(黑或双黑),再次判断情况
DB黑色远黑近红兄弟和红侄子颜色互换,朝着DB的反方向旋转,(即变到下一种状态)此时再重新判断DB状态
DB黑色近黑远红兄弟和父节点颜色互换,父节点向DB方向旋转,删除DB记号,并将远红侄子标为黑色

这样理解红黑树的删除修正逻辑:为了弥补双黑节点将要失去的黑色,我们将父节点加一个黑色弥补到这条线路上,但这样兄弟节点那边会多一个黑色。因此,如果侄子是黑的,那么兄弟就可以变红来保持黑色平衡;否则为了不影响兄弟路线上的黑色数目,父节点需要通过旋转来到DB的路径,而兄弟路线上少的一个黑色要由远侄子(不会被带到DB路线上的侄子)弥补。因此,这种情况下兄弟必须是黑色(这个黑色将贡献给父亲),而远侄子也必须是红色(才能弥补一个黑色)。

💫 小星说丨红黑树删除修正达到以下三种情况,即为最终情况,可以彻底解决矛盾,其他的操作是为了达到这三种状态。

  1. 当前节点为根节点
  2. 当前节点为红色节点
  3. 兄黑远侄子红

在这里插入图片描述

手撕红黑树

初始化

首先,我们需要准备构建红黑树所需要的基础数据结构,以及基本的类成员与初始化方法

节点数据结构

红黑树由节点构成,因此我们首先需要定义节点的数据结构

struct Node {
  int data;
  Node *parent;
  Node *left;
  Node *right;
  int color;
};

// 定义节点指针类型,方便引用
typedef Node *NodePtr;

基本类成员

这里我们需要定义两个类成员:根节点与NULL节点(用于截止判定)

class RedBlackTree {
   private:
  NodePtr root;
  NodePtr TNULL;
}

初始化二叉树

二叉树的初始化:1. 初始化TNULL节点 2. 初始化根节点

RedBlackTree() {
    TNULL = new Node;
    TNULL->color = 0;
    TNULL->left = nullptr;
    TNULL->right = nullptr;
    root = TNULL;
  }

红黑树的左旋与右旋

左旋实现:

  1. 定义right为节点x的右子节点
  2. 将right的左孩子接在父节点的右边
  3. right的父节点变为祖父节点;祖父节点的(左/右)子节点变为right
  4. right的左节点变为x,x的父节点变为right

右旋实现同理:

void leftRotate(NodePtr x) {
    NodePtr y = x->right;
    x->right = y->left;
    if (y->left != TNULL) {
      y->left->parent = x;
    }
    y->parent = x->parent;
    if (x->parent == nullptr) {
      this->root = y;
    } else if (x == x->parent->left) {
      x->parent->left = y;
    } else {
      x->parent->right = y;
    }
    y->left = x;
    x->parent = y;
  }

  void rightRotate(NodePtr x) {
    NodePtr y = x->left;
    x->left = y->right;
    if (y->right != TNULL) {
      y->right->parent = x;
    }
    y->parent = x->parent;
    if (x->parent == nullptr) {
      this->root = y;
    } else if (x == x->parent->right) {
      x->parent->right = y;
    } else {
      x->parent->left = y;
    }
    y->right = x;
    x->parent = y;
  }

红黑树的查找

接下来实现红黑树的查找,我们定义一个search公共函数作为外部调用接口,内部的递归使用私有函数searchHelper。

private:
	NodePtr searchTreeHelper(NodePtr node, int key) {
	    if (node == TNULL || key == node->data) {
	      return node;
	    }
	
	    if (key < node->data) {
	      return searchTreeHelper(node->left, key);
	    }
	    return searchTreeHelper(node->right, key);
	  }
public:
	NodePtr searchTree(int k) {
    return searchTreeHelper(this->root, k);
  }

红黑树的插入

这里我们需要定义两个函数,一个是insert函数,一个是插入修正insertFix函数

插入

插入函数逻辑的实现包括:

  1. 为插入的值new一个新节点
  2. 找到插入位置
  3. 插入该节点,建立父子连接(注意根节点的判定)
void insert(int key) {
		// 1. new一个新节点
    NodePtr node = new Node;
    node->parent = nullptr;
    node->data = key;
    node->left = TNULL;
    node->right = TNULL;
    node->color = 1;

    NodePtr y = nullptr;
    NodePtr x = this->root;
		
		// 2. 找到插入位置
    while (x != TNULL) {
      y = x;
      if (node->data < x->data) {
        x = x->left;
      } else {
        x = x->right;
      }
    }
		
		// 3. 建立父子连接
    node->parent = y;
    if (y == nullptr) {
      root = node;
    } else if (node->data < y->data) {
      y->left = node;
    } else {
      y->right = node;
    }

    insertFix(node);
  }

插入修正

插入修正的5种情况中,情况1和情况2可以排除在循环外,情况3,4,5由循环解决

void insertFix(NodePtr k) {
        NodePtr u;
        // 情况1:根结点&情况2:黑父节点
        while (k->parent != nullptr && k->parent->color == 1) {
        // 父节点为右孩子
        if (k->parent == k->parent->parent->right) {
            // 获取叔叔节点
            u = k->parent->parent->left;

            // 情况3:叔叔节点为红
            if (u->color == 1) {
            u->color = 0;
            k->parent->color = 0;
            k->parent->parent->color = 1;
            // 矛盾转移至祖父节点
            k = k->parent->parent;
            } 

            // 叔叔节点为黑
            else {
            // 情况4:父子偏向不一致
            if (k == k->parent->left) {
                k = k->parent;
                rightRotate(k);
            }
            // 情况5:父子偏向一致
            k->parent->color = 0;
            k->parent->parent->color = 1;
            leftRotate(k->parent->parent);
            }
        }
        // 父节点为左孩子,类似 
        else {
            u = k->parent->parent->right;

            if (u->color == 1) {
            u->color = 0;
            k->parent->color = 0;
            k->parent->parent->color = 1;
            k = k->parent->parent;
            } 
            else {
            if (k == k->parent->right) {
                k = k->parent;
                leftRotate(k);
            }
            k->parent->color = 0;
            k->parent->parent->color = 1;
            rightRotate(k->parent->parent);
            }
        }
        }
        // 根结点染黑
        root->color = 0;
    }

红黑树的删除

这里同样需要定义两个函数,一个是删除函数deleteNode,一个是删除修正函数deleteFix

删除

删除函数的逻辑实现包括:

  1. 找到key对应的节点
  2. 找到对应的代替节点(叶子节点;有一个子节点;有两个子节点)
  3. 删除修正
void deleteNode(int key)
    {
        // 1. 找到key对应的节点
        NodePtr z = TNULL;
        z = searchTreeHelper(this->root, key);
        if (z == TNULL)
        {
            cout << "Key not found in the tree" << endl;
            return;
        }

        // 2. 找到对应的代替节点
        NodePtr y = TNULL;
        if (z->left == TNULL && z->right == TNULL)
        {
            y = z;
        }
        else if (z->left == TNULL)
        {
            y = z->right;
        }
        else if (z->right == TNULL)
        {
            y = z->left;
        }
        else
        {
            y = minimum(z->right);
        }
        z->data = y->data;

        // 3. 删除修正
        deleteFix(y);
        // 修正完后删除这个节点
        if (y->data < y->parent->data){
            y->parent->left = TNULL;
        }
        else{
            y->parent->right = TNULL;
        }
        // 释放指针
        z = y;
        delete y;
        y = NULL;
        z = NULL;
    }

删除修正

void deleteFix(NodePtr x)
    {
        NodePtr s;
        // 情况1:根结点&情况2:红节点
        while (x != root && x->color == 0)
        {
            // x为左节点
            if (x == x->parent->left)
            {
                s = x->parent->right;
                // 情况3:兄弟节点为红色
                if (s->color == 1)
                {
                    s->color = 0;
                    x->parent->color = 1;
                    leftRotate(x->parent);
                    // 获得新的兄弟节点
                    s = x->parent->right;
                }

                // 情况4:兄弟节点为黑色,侄子节点为黑色 
                if (s->left->color == 0 && s->right->color == 0)
                {
                    s->color = 1;
                    // 父亲节点变为要判断的节点
                    x = x->parent;
                }
                else
                {
                    // 情况5: 侄子远黑近红
                    if (s->right->color == 0)
                    {
                        s->left->color = 0;
                        s->color = 1;
                        rightRotate(s);
                        s = x->parent->right;
                    }

                    // 情况6: 侄子远红近黑
                    s->color = x->parent->color;
                    x->parent->color = 0;
                    s->right->color = 0;
                    leftRotate(x->parent);
                    // 终止循环
                    x = root;
                }
            }
            // x为右节点,类似
            else
            {
                s = x->parent->left;
                if (s->color == 1)
                {
                    s->color = 0;
                    x->parent->color = 1;
                    rightRotate(x->parent);
                    s = x->parent->left;
                }

                if (s->right->color == 0 && s->right->color == 0)
                {
                    s->color = 1;
                    x = x->parent;
                }
                else
                {
                    if (s->left->color == 0)
                    {
                        s->right->color = 0;
                        s->color = 1;
                        leftRotate(s);
                        s = x->parent->left;
                    }

                    s->color = x->parent->color;
                    x->parent->color = 0;
                    s->left->color = 0;
                    rightRotate(x->parent);
                    x = root;
                }
            }
        }
        x->color = 0;
    }

总结

再最后,我们再用一张思维导图总结本篇博客的内容

在这里插入图片描述

源代码

本文代码已在github上开源,包含c++,python(待补充), golang(待补充)的红黑树代码

https://github.com/Yuxin1999/star-code

参考资料

红黑树 - 插入篇 - 掘金

Deletion in Red-Black (RB) Tree

Red-Black Tree

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值