机器学习
文章平均质量分 95
一只楚楚猫
这个作者很懒,什么都没留下…
展开
-
一篇文章入门梅尔频率倒谱系数
计算Mel刻度滤波器组Filter Banks由语音信号的性质和人类对这些信号的感知所驱动的;计算MFCC由一些机器学习算法的限制所驱动的计算量:MFCC是在FBank的基础上进行的特征区分度:FBank特征相关性较高(相邻滤波器组有重叠),MFCC具有更好的判别度信息量:Filter Banks包含比MFCC更多的信息如果机器学习算法不易受高度相关输入的影响,则使用Mel刻度滤波器组。如果机器学习算法易受相关输入的影响,则使用MFCC。原创 2024-10-29 19:44:29 · 1021 阅读 · 0 评论 -
一篇文章入门傅里叶变换
如果忽略表达倍数关系的系数,对应的含义也会发生变化,不再是质心,而是信号存在的时间越久,位置是质心位置乘以一个倍数,它的值就越大。按照上面的说明来记录绘出图像,记录每个缠绕频率(速度)对应的质心位置(在横坐标等于零点处有一个很大的值,只是因为原来的图像没有关于横轴对称,有一个偏移量)从最开始的 0.79圈/秒一直变化到1.55圈/秒,再到最后的恰好是3圈/秒,和原来的信号3次震荡/秒相同,此时会出现一个非常稳定的图像。我们可以看到,新图像的横坐标写的是频率(Frequency),即缠绕圆圈的速度。原创 2024-10-29 16:59:55 · 986 阅读 · 0 评论 -
『扩散模型』一篇文章入门随机微分方程SDE
文章目录随机微分方程SDE标准布朗运动SDE加噪SDE去噪Score Matching参考文献随机微分方程SDE笔者建议,学完DDPM再来看SDE的作用和推导过程标准布朗运动在学习随机微分方程之前,我们先来看一下什么是标准布朗运动假设有一个一维的直线,有个小人从原点出发,每次随机地选择向左走1格或者向右走1格,且向左走和向右走的两个选项,被选择的概率相等→\rightarrow→用StS_tSt代表小人离原点的距离,ttt代表代表选择的次数,如果选择的次数越多,那么StS_tSt将会逐渐服从一原创 2024-10-20 12:59:30 · 564 阅读 · 0 评论 -
一篇文章入门主成分分析PCA
文章目录基本概念事件随机变量独立同分布离散型随机变量伯努利分布(两点分布)二项分布几何分布泊松分布连续型随机变量正态分布期望方差标准化协方差相关系数线性组合特征值和特征向量特征值分解对称矩阵的特征值分解齐次线性方程组单位向量基向量矩阵的秩最高阶非零子式正定矩阵正交矩阵正交基逆矩阵伴随矩阵奇异值分解主成分分析基本概念事件事件:某种情况的“陈述” ⇒\Rightarrow⇒ 事件A:掷出的骰子为偶数点 ⇒\Rightarrow⇒ 事件A包含多种结果,每种结果都是一个基本事件 ⇒\Rightarrow⇒ 事原创 2024-07-02 10:44:56 · 1104 阅读 · 0 评论 -
一篇文章入门KNN算法
因此,无论我们从哪里获取数据,我们都需要使其符合这些约束。该数据包含 30 部电影,包括七种类型的每部电影的数据及其 IMDB 评级。标签列全为零,因为我们不使用该数据集进行分类或回归。此外,在使用 KNN 算法时,电影之间的关系(例如演员、导演和主题)不会被考虑在内,因为捕获这些关系的数据在数据集中丢失了。因此,当我们对数据运行 KNN 算法时,相似性将仅基于所包含的类型和电影的 IMDB 评级。原创 2023-10-31 19:07:48 · 282 阅读 · 0 评论