力扣之剑指offer【12.04&12.05&12.07】

04. 二维数组中的查找

在一个 n * m 的二维数组中,每一行都按照从左到右 非递减 的顺序排序,每一列都按照从上到下 非递减 的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。

在这里插入图片描述

class Solution {
public:
    bool findNumberIn2DArray(vector<vector<int>>& matrix, int target) {
        //O(M+N)
        int n=matrix.size();
        if(n==0) return false;
        int m=matrix[0].size();
        if(m==0) return false;
        int i=0,j=m-1;
        while(i<=n-1 && j>=0){
            if(matrix[i][j]>target) j--;
            else if(matrix[i][j]<target) i++;
            else return true;
        }
        return  false;
    }
};
    bool findNumberIn2DArray(vector<vector<int>>& matrix, int target) {
        //二分O(NlogM)
        int n=matrix.size();
        if(n==0) return false;
        int m=matrix[0].size();
        if(m==0) return false;
        for(int i=0;i<n;i++){
            int l=0,r=m-1;
            if(matrix[i][l]<=target && matrix[i][r]>=target) {
                //二分
                while(l<r){
                    int mid=(l+r)>>1;
                    if(matrix[i][mid]>target) r=mid;
                    else if(matrix[i][mid]<target) l=mid+1;
                    else return true;
                }
                if(matrix[i][l]==target) return true;
            }
        }
        return false;
    }

14- I. 剪绳子

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

class Solution {
public:
    int cuttingRope(int n) {
        //dp[i]: 长度为i的绳子剪成m段的最大乘积
        //dp[i]=max(j(i-j),dp[i-j]*j):(长度为i-j的段不裁,长度为i-j的段继续裁)
        
        vector <int> dp(n + 1);
        dp[1] = 1;
        dp[2] = 1;
        for(int i=3;i<=n;i++){
            for(int j=i-1;j>0;j--){
                dp[i]=max(dp[i],max(j*(i-j),j*dp[i-j]));
            }
        }
        return dp[n];
    }
};

贪心:证明
结论:当所有绳段长度相等时,乘积最大。② 最优的绳段长度为 33

class Solution {
    public int cuttingRope(int n) {
        if(n < 4){
            return n - 1;
        }
        int res = 1;
        while(n > 4){
            res *= 3;
            n -= 3;
        }
        return res * n;
    }
}

32 - I. 从上到下打印二叉树

从上到下打印出二叉树的每个节点,同一层的节点按照从左到右的顺序打印。

例如:
给定二叉树: [3,9,20,null,null,15,7],
返回:
[3,9,20,15,7]

class Solution {
public:
    vector<int> levelOrder(TreeNode* root) {
        //bfs
        vector<int> p;
        queue<TreeNode*> q;
        q.push(root);
        while(!q.empty()){
            auto n=q.front();q.pop();
            if(n){
                p.push_back(n->val);
                if(n->left) q.push(n->left);
                if(n->right) q.push(n->right);
            }
        }
        return p;
    }
};

32 - II. 从上到下打印二叉树 II

从上到下按层打印二叉树,同一层的节点按从左到右的顺序打印,每一层打印到一行。

例如:
给定二叉树: [3,9,20,null,null,15,7],
返回其层次遍历结果:
[
[3],
[9,20],
[15,7]
]

每次队列中存储的就是一层的结点的数量。所以要使用q.size()

class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        vector<vector<int>> p;
        if (!root) {
            return p;
        }
        queue<TreeNode*> q;
        q.push(root);
        while(!q.empty()){
            p.push_back(vector <int> ());
            int cur_q_size=q.size();
            for(int i=1;i<=cur_q_size;i++){
                auto no=q.front();q.pop();
                p.back().push_back(no->val);
                if(no->left) q.push(no->left);
                if(no->right) q.push(no->right);
            }
                           
        }
        return p;
    }
};

ret.push_back(vector ()); 在结果数组(ret, 二维)中添加一个新的数组(一维)用于保存每一层的节点 ret.back().push_back(node->val);获取结果数组(ret, 二维)中最后一个数组(一维,保存当前层节点的数组),并在该数组中添加节点

16. 数值的整数次方

实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。

class Solution {
public:
    double multi(double x, long long int N){
        double res=1, con=x;
        while(N > 0){
            if(N%2 == 1){
                res *= con;
            }
            con *= con;
            N /= 2;
        }
        return res;
    }
    double myPow(double x, int n) {
        long long int N=n;
        if(N>0) return multi(x,N);
        else return 1.00/(multi(x,-N));
    }
};

递归

class Solution {
public:
    double quick_multi(double x, long long int N){
        if(N==0) return 1.0;
        double y=quick_multi(x,N/2);
        return N%2==0? y*y:y*y*x; 
    }
    double myPow(double x, int n) {
        long long int N=n;
        if(N>0) return quick_multi(x,N);
        else return 1.00/(quick_multi(x,-N));
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值