算法设计课第一节

最小公约数gcd证明
x=mC1
y=mC2
x-y=m(C1-C2) 仍然是m的倍数

辗转相减法
y和x-y最小公倍数仍然是m
x y 和 y x-y 等价
此时可以用递归处理该算法
gcd(x,y)=gcd(y,x-y)

辗转相除法
同理 需要证明
gcd(x,y)=gcd(y,x%y) 等价
最小公倍数均为m

x=mC1
y=mC2
x%y=mC1%mC2
=mC1-mC2k (k 为正整数)
=m(C1-C2
k) 仍然为m的倍数

y x%y 的最小公倍数仍然为m
所以
gcd(x,y)=gcd(y,x%y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值