最小公约数gcd证明
x=mC1
y=mC2
x-y=m(C1-C2) 仍然是m的倍数
辗转相减法
y和x-y最小公倍数仍然是m
x y 和 y x-y 等价
此时可以用递归处理该算法
gcd(x,y)=gcd(y,x-y)
辗转相除法
同理 需要证明
gcd(x,y)=gcd(y,x%y) 等价
最小公倍数均为m
x=mC1
y=mC2
x%y=mC1%mC2
=mC1-mC2k (k 为正整数)
=m(C1-C2k) 仍然为m的倍数
y x%y 的最小公倍数仍然为m
所以
gcd(x,y)=gcd(y,x%y)