铲屎官 - 特征运动
题目描述
小明是一名算法工程师,同时也是一名铲屎官。某天,他突发奇想,想从猫咪的视频里挖掘一些猫咪的运动信息。为了提取运动信息,他需要从视频的每一帧提取猫咪特征。一个猫咪特征是一个两维的vector<x,y>。如果 x_1 = x_2 and y_1=y_2
,那么这俩是同一个特征。
因此,如果喵咪特征连续一致 可以认为喵咪在运动。也就是说,如果特征<a,b>在持续帧里出现,那么它将构成特征运动。比如,特征<a,b>在第 2/3/4/7/8帧出现,那么该特征将形成两个持征运动2-3-4和7-8。
现在,给定每一顿的特征,特征的数量可能不一样,小明期望能找到最长的特征运动。
输入描述:
第一行包含一个正整数N,代表测试用例的个致。
每个测试用例的第一行包含一个正整数M,代表视频的帧数。
接了来的 M 行,每行代表一针。其中,第一个数字是该帧的特证个数,
接下来的数字是在特征的取值;比如样例输入第三行里,2 代表该帧有两个猫味特征,<1,1>和<2,2>
所有用例的输入特征总数和100000
N满足1 <= N <= 100000, M 满足 1 <= M <= 10000;一帧的特征个数满足 <= 10000
特征取值均非负整数
输出描述:
对每一个测试用例,输出特征运动的长度作为 1 行
示例1:
输入
1 8 2 1 1 2 2 2 1 1 1 4 2 1 1 2 2 2 2 2 1 4 0 0 1 1 1 1 1 1
输出
3
说明
特征 <1, 1> 在连续帧中连续出现3次,相比其他特征连续出现的次数大,所以输出3
代码
package bytes;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Scanner;
/**
* Class Main ...
*
* @author LiJun
* Created on 2019/4/14
*/
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
// n 记录测试用例个数
int n = Integer.parseInt(scanner.nextLine());
for (int i = 0; i < n; i++) {
// m 代表有多少帧
int m = Integer.parseInt(scanner.nextLine());
// 创建个list 存取每帧的信息
LinkedList<HashSet<String>> cats = new LinkedList<>();
// 存取所有的特征
HashSet<String> vector = new HashSet<>();
// 处理输入信息,把每帧的数据处理到一个set里面之后放入list
for (int j = 0; j < m; j++) {
HashSet<String> temp = new HashSet<>();
String[] s = scanner.nextLine().split(" ");
if (s.length > 0) {
// 转换成字符串存到set 中,并且把该特征放到所有特征中
int t = Integer.parseInt(s[0]);
for (int k = 1; k <= t * 2; k = k + 2) {
String str = s[k] + "_" + s[k + 1];
temp.add(str);
vector.add(str);
}
}
cats.add(temp);
}
// 开始计算
int max = Integer.MIN_VALUE;
for (String str : vector) {
// 每次判断一个特征 在所有帧中的出现次数
int temp = 0;
int maxNum = Integer.MIN_VALUE;
for (int q = 0; q < m; q++) {
// 因为用的是hashset 这个复杂度是 O(1)
if (cats.get(q).contains(str)) {
temp++;
}else {
temp = 0;
}
// 找出连续帧的最大值
maxNum = maxNum > temp ? maxNum : temp;
}
// 得出结果
max = max > maxNum ? max : maxNum;
}
System.out.println(max);
}
}
}
思路
其实是暴力思路,所有特征都去遍历一遍,但是用hash来做,可以把遍历每帧的过程给简化成O(1),
n个特征,m个帧,t帧中查x特征是否存在O(1),总时间复杂度O(n*m)