字节跳动-铲屎官-特征运行

铲屎官 - 特征运动

题目描述

小明是一名算法工程师,同时也是一名铲屎官。某天,他突发奇想,想从猫咪的视频里挖掘一些猫咪的运动信息。为了提取运动信息,他需要从视频的每一帧提取猫咪特征。一个猫咪特征是一个两维的vector<x,y>。如果 x_1 = x_2 and y_1=y_2,那么这俩是同一个特征。
因此,如果喵咪特征连续一致 可以认为喵咪在运动。也就是说,如果特征<a,b>在持续帧里出现,那么它将构成特征运动。比如,特征<a,b>在第 2/3/4/7/8帧出现,那么该特征将形成两个持征运动2-3-4和7-8。
现在,给定每一顿的特征,特征的数量可能不一样,小明期望能找到最长的特征运动。
输入描述:

第一行包含一个正整数N,代表测试用例的个致。

每个测试用例的第一行包含一个正整数M,代表视频的帧数。

接了来的 M 行,每行代表一针。其中,第一个数字是该帧的特证个数,
接下来的数字是在特征的取值;比如样例输入第三行里,2 代表该帧有两个猫味特征,<11><22> 
所有用例的输入特征总数和100000
N满足1 <= N <= 100000, M 满足 1 <= M <= 10000;一帧的特征个数满足 <= 10000

特征取值均非负整数

输出描述:

对每一个测试用例,输出特征运动的长度作为 1

示例1:

输入

1
8
2 1 1 2 2
2 1 1 1 4
2 1 1 2 2
2 2 2 1 4
0
0
1 1 1
1 1 1

输出

3

说明

特征 <1, 1> 在连续帧中连续出现3次,相比其他特征连续出现的次数大,所以输出3

代码

package bytes;

import java.util.HashSet;
import java.util.LinkedList;
import java.util.Scanner;

/**
 * Class Main ...
 *
 * @author LiJun
 * Created on 2019/4/14
 */
public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        // n 记录测试用例个数
        int n = Integer.parseInt(scanner.nextLine());
        for (int i = 0; i < n; i++) {
            // m 代表有多少帧
            int m = Integer.parseInt(scanner.nextLine());
            // 创建个list 存取每帧的信息
            LinkedList<HashSet<String>> cats = new LinkedList<>();
            // 存取所有的特征
            HashSet<String> vector = new HashSet<>();
            // 处理输入信息,把每帧的数据处理到一个set里面之后放入list
            for (int j = 0; j < m; j++) {
                HashSet<String> temp = new HashSet<>();
                String[] s = scanner.nextLine().split(" ");
                if (s.length > 0) {
                    // 转换成字符串存到set 中,并且把该特征放到所有特征中
                    int t = Integer.parseInt(s[0]);
                    for (int k = 1; k <= t * 2; k = k + 2) {
                        String str = s[k] + "_" + s[k + 1];
                        temp.add(str);
                        vector.add(str);
                    }
                }
                cats.add(temp);
            }
            // 开始计算
            int max = Integer.MIN_VALUE;
            for (String str : vector) {
                // 每次判断一个特征 在所有帧中的出现次数
                int temp = 0;
                int maxNum = Integer.MIN_VALUE;
                for (int q = 0; q < m; q++) {
                    // 因为用的是hashset 这个复杂度是 O(1)
                    if (cats.get(q).contains(str)) {
                        temp++;
                    }else {
                        temp = 0;
                    }
                    // 找出连续帧的最大值
                    maxNum = maxNum > temp ? maxNum : temp;
                }
                // 得出结果
                max = max > maxNum ? max : maxNum;
            }
            System.out.println(max);
        }

    }
}

思路

其实是暴力思路,所有特征都去遍历一遍,但是用hash来做,可以把遍历每帧的过程给简化成O(1),
n个特征,m个帧,t帧中查x特征是否存在O(1),总时间复杂度O(n*m)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值