LeetCode 42. Trapping Rain Water

本文介绍了一种使用双指针技术解决雨后积水问题的方法。给定一个数组表示地形的高度,算法通过比较左右两侧的高度来计算能容纳多少雨水。此算法时间复杂度为O(n),空间复杂度为O(1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Statement

(Source) Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

Trapping Rain Water
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

Tags: Array, Stack, Two Pointers.

Solution - Two Pointers

The idea is very simple. Begin scan from beginning and end of array. Compare value of left and right pointer, hold the greater one and move the other to inner array. Compute passed area when pointer gets inner. (mo10)

class Solution(object):            
    def trap(self, height):
        """
        :type height: List[int]
        :rtype: int
        """
        if not height or len(height) < 3:
            return 0

        res = 0
        n = len(height)
        left, right = 0, n - 1
        lower = min(height[left], height[right])
        while left < right:
            if height[left] < height[right]:
                lower = max(lower, height[left])
                res += (lower - height[left])
                left += 1
            else:
                lower = max(lower, height[right])
                res += (lower - height[right])
                right -= 1
        return res

Complexity Analysis:

  • Time Complexity: O(n) .
  • Space Complexity: O(1) .
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值