泰勒公式

第三节 泰勒公式 P150

对于一些较复杂的函数,为了便于研究,往往希望用一些简单的函数来仅是表达。对于用多项式表示的函数,只要对自变量x进行有限次加减乘三种算术运算,便能求出它的函数值来,因此我们经常用多项式来近似表达函数。
在微分的应用中已经知道,当|x|很小时,有如下的近似等式:
ex1+x ln(1+x)x

但是这种近似表达式还存在着不足之处:首先精确度不高,其次是用它来做近似计算时,不能具体估算处误差大小。因此对于精确度要求较高且需要精确计算时,就必须用高次多项式来近似表达函数,同时给出误差公式。
于是提出如下的问题:设函数 f(x) 在含有 x0 的开区间内具有直到(n+1)阶导数,试找出一个关于 (xx0) 的n次多项式:

pn(x)=a0+a1(xx0)+a2(xx0)2+...+an(xx0)n
(1)
来近似表达 f(x) ,要求 pn(x)f(x) 之差是比 (xx0)n 高阶的无穷小,并给出误差 |f(x)pn(x)| 的具体表达式。
下面我们来讨论这个问题,假设 pn(x)x0 处的函数值及它的直到n阶导数在 x0 处的值依次与 f(x0),f(x0),f′′(x0),...f(n)(x0) 相等,即满足:
pn(x0)=f(x0),pn(x0)=f(x0),
p′′n(x0)=f′′(x0),p(n)n(x0)=f(n)(x0)
按这些等式来确定多项式(1)的系数 a0,a1,a2,...an ,为此,对(1)式求各阶导数,然后分别带入以上等式,得到:
a0=f(x0),1×a1=f(x0),2!×a2=f′′(x0),...,n!×an=f(n)(x0) ,即得到:
a0=f(x0),a1=f(x0),a2=f′′(x0)2!,an=f(n)(x0)n!

上面证明方法,求 pn(x) 的各阶导(函)数,然后将 x0 带入到导函数中得到的。例如,设 u=xx0 pn(x)=dydx=dydu×dudx=a1+2a2×u+...+nan×u(n1) ,将 u xx0替换,将 x0 带入到导函数中得到 pn(x0)=a1

将上面求得的系数带入(1)多项式,有:

pn(x)=f(x0)+f(x0)(xx0)+f′′(x0)2!(xx0)2+...+f(n)(x0)n!(xx0)n
. (2)

泰勒中值定理 P151

泰勒中值定理 如果函数 f(x) 在含有 x0 的某个开区间 (a,b) 内具有直到(n+1)阶导数,则对任一 x(a,b) ,有

f(x)=f(x0)+f(x0)(xx0)+f′′(x0)2!(xx0)2+...+f(n)(x0)n!(xx0)n+Rn(x)
. (3)

其中

Rn(x)=f(n+1)(ξ)(n+1)!(xx0)(n+1)
. (4)

这里的 ξ x0 x 之间的某值。

Rn(x)=f(x)pn(x),只需证明
Rn(x)=f(n+1)(ξ)(n+1)!(xx0)(n+1) ,( ξ x0 x 之间)。

P152
由假设可知,Rn(x)(a,b)内具有直到(n+1)阶导数,且 Rn(x0)=Rn(x0)=R′′n(x0)=...=R(n)n(x0)=0 (因为上面的泰勒定理中要求f(x)的各阶导数与多项式 Pn(x) 的各阶导数在 x0 处相等)。对两个函数 Rn(x)(xx0)(n+1) 在以 x0x 为端点的区间上应用柯西中值定理(显然这两个函数满足柯西中值定理的条件),得到:

f(b)f(a)F(b)F(a)=f(ξ)F(ξ) (柯西中值定理的例子)
最终得到:
Rn(x)Rn(x0)(xx0)n+10=Rn(ξ1)(n+1)(ξ1x0)n ,由于前面提到 Rn(x0)=0 ,所以该等式相当于:
Rn(x)(xx0)n+1=Rn(ξ1)(n+1)(ξ1x0)n
ξ1xx0

再对两个函数 Rn(x)(n+1)(xx0)nx0ξ1 为端点的区间应用柯西中值定理,得到:

Rn(ξ1)(n+1)(ξ1x0)n=Rn(ξ1)Rn(x0)(n+1)(ξ1x0)n0=R′′n(ξ2)n(n+1)(ξ2x0)n1
ξ2x0ξ1 )。

综上两个等式可得:

Rn(x)(xx0)n+1=R′′n(ξ2)n(n+1)(ξ2x0)n1

照此方法继续做下去,经过(n+1)次后,最终得到:

Rn(x)(xx0)n+1=Rn+1n(ξ)(n+1)!
ξx0ξnx0x )。

注意到: Rn+1n(x)=fn+1(x) ,(因为 Pn+1n(x)=0 ),由上式得:

Rn(x)=fn+1(ξ)(n+1)!(xx0)n+1
ξx0x ),定理证毕。

多项式(2)称为函数 f(x)(xx0) 的幂展开的n次泰勒多项式,公式(3)称为 f(x)(xx0) 的幂展开的带有拉格郎日型余项的n阶泰勒公式,而 Rn(x) 的表达式(4)称为拉格郎日型余项。
当n=0时,泰勒公式变成拉格郎日中值定理:

f(x)=f(x0)+f(ξ)(xx0)
( ξx0x )。

因此,泰勒中值定理是格郎日中值定理的推广。

由泰勒中值定理可知,以多项式 Pn(x)f(x) ,其误差为 |Rn(x)| 。如果对某个固定的n,当 x(a,b)|f(n+1)(x)M| ,则有估计式:

|Rn(x)|=|fn+1(ξ)(n+1)!(xx0)n+1|M(n+1)!|xx0|(n+1)
.(5)

limxx0Rn(x)(xx0)n=0 .

上面公式的分子分母分别约去 (xx0)n,limxx0M(n+1)!(xx0)1=0

由此可见,当 xx0 时误差 |Rn(x)|(xx0)n 高阶的无穷小,即

Rn(x)=o[(xx0)n]
.(6)
这样,我们提出的问题圆满地得到解决了。

sfsf rrtt P153

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值