第三节 泰勒公式 P150
对于一些较复杂的函数,为了便于研究,往往希望用一些简单的函数来仅是表达。对于用多项式表示的函数,只要对自变量x进行有限次加减乘三种算术运算,便能求出它的函数值来,因此我们经常用多项式来近似表达函数。
在微分的应用中已经知道,当|x|很小时,有如下的近似等式:
ex≈1+x
,
ln(1+x)≈x
但是这种近似表达式还存在着不足之处:首先精确度不高,其次是用它来做近似计算时,不能具体估算处误差大小。因此对于精确度要求较高且需要精确计算时,就必须用高次多项式来近似表达函数,同时给出误差公式。
于是提出如下的问题:设函数
f(x)
在含有
x0
的开区间内具有直到(n+1)阶导数,试找出一个关于
(x−x0)
的n次多项式:
来近似表达 f(x) ,要求 pn(x)与f(x) 之差是比 (x−x0)n 高阶的无穷小,并给出误差 |f(x)−pn(x)| 的具体表达式。
下面我们来讨论这个问题,假设 pn(x)在x0 处的函数值及它的直到n阶导数在 x0 处的值依次与 f(x0),f′(x0),f′′(x0),...f(n)(x0) 相等,即满足:
pn(x0)=f(x0),p′n(x0)=f′(x0),
p′′n(x0)=f′′(x0),p(n)n(x0)=f(n)(x0)
按这些等式来确定多项式(1)的系数 a0,a1,a2,...an ,为此,对(1)式求各阶导数,然后分别带入以上等式,得到:
a0=f(x0),1×a1=f′(x0),2!×a2=f′′(x0),...,n!×an=f(n)(x0) ,即得到:
a0=f(x0),a1=f′(x0),a2=f′′(x0)2!,an=f(n)(x0)n!
上面证明方法,求 pn(x) 的各阶导(函)数,然后将 x0 带入到导函数中得到的。例如,设 u=x−x0 , p′n(x)=dydx=dydu×dudx=a1+2a2×u+...+nan×u(n−1) ,将 u 用
x−x0 替换,将 x0 带入到导函数中得到 p′n(x0)=a1 。
将上面求得的系数带入(1)多项式,有:
泰勒中值定理 P151
泰勒中值定理 如果函数
f(x)
在含有
x0
的某个开区间
(a,b)
内具有直到(n+1)阶导数,则对任一
x∈(a,b)
,有
其中
这里的 ξ 是 x0 与 x 之间的某值。
证
Rn(x)=f(n+1)(ξ)(n+1)!(x−x0)(n+1)
,(
ξ
在
x0
与
x
之间)。
P152
由假设可知,
f(b)−f(a)F(b)−F(a)=f′(ξ)F′(ξ) (柯西中值定理的例子)
最终得到:
Rn(x)−Rn(x0)(x−x0)n+1−0=R′n(ξ1)(n+1)(ξ1−x0)n ,由于前面提到 Rn(x0)=0 ,所以该等式相当于:
Rn(x)(x−x0)n+1=R′n(ξ1)(n+1)(ξ1−x0)n
ξ1在x与x0之间 。
再对两个函数 R′n(x)与(n+1)(x−x0)n在以x0及ξ1 为端点的区间应用柯西中值定理,得到:
R′n(ξ1)(n+1)(ξ1−x0)n=R′n(ξ1)−R′n(x0)(n+1)(ξ1−x0)n−0=R′′n(ξ2)n(n+1)(ξ2−x0)n−1
( ξ2在x0与ξ1之间 )。
综上两个等式可得:
Rn(x)(x−x0)n+1=R′′n(ξ2)n(n+1)(ξ2−x0)n−1
照此方法继续做下去,经过(n+1)次后,最终得到:
Rn(x)(x−x0)n+1=Rn+1n(ξ)(n+1)!
( ξ在x0与ξn之间,因而也在x0与x之间 )。
注意到: Rn+1n(x)=fn+1(x) ,(因为 Pn+1n(x)=0 ),由上式得:
Rn(x)=fn+1(ξ)(n+1)!(x−x0)n+1
( ξ在x0与x之间 ),定理证毕。
多项式(2)称为函数
f(x)按(x−x0)
的幂展开的n次泰勒多项式,公式(3)称为
f(x)按(x−x0)
的幂展开的带有拉格郎日型余项的n阶泰勒公式,而
Rn(x)
的表达式(4)称为拉格郎日型余项。
当n=0时,泰勒公式变成拉格郎日中值定理:
f(x)=f(x0)+f′(ξ)(x−x0)
( ξ在x0与x之间 )。
因此,泰勒中值定理是格郎日中值定理的推广。
由泰勒中值定理可知,以多项式 Pn(x)近似表达函数f(x)时 ,其误差为 |Rn(x)| 。如果对某个固定的n,当 x∈(a,b)时,|f(n+1)(x)≤M| ,则有估计式:
及
limx→x0Rn(x)(x−x0)n=0 .
上面公式的分子分母分别约去 (x−x0)n,得到limx→x0M(n+1)!(x−x0)1=0
由此可见,当
x→x0
时误差
|Rn(x)|是比(x−x0)n
高阶的无穷小,即
这样,我们提出的问题圆满地得到解决了。
sfsf rrtt P153