模仿和自创 读《Head First 设计模式》笔记

 

一)

模仿往往更容易,更快捷。

从头开始自创,则可能需要更多的精力,更优秀的头脑,也并不是每个人都适合去做这份工作的。

 

二)

尺有所长,寸有所短。

每个人应该都有在做某件事情时,感觉最顺手,最自然的情况。

有些兄弟天生就喜欢关注细节,能够把局部的事情做的井井有条。

有些兄弟天生就喜新厌旧,喜欢探索新的领域。

有些兄弟天生就有很好的抽象,概括能力。能够从纷杂的事物中,发现根源。站得高,看得远,具有很强的全局观。

有些兄弟有能力在很短的时间内东拼西凑把一个新功能给演示出来。

有些兄弟喜欢慢工出细活。

。。。

 

在程序设计中,如何根据每个人的特点,合理安排人员分工,应该也是一门学问。

 

 

三)

我们必须承认:一个成熟的正确的思想,应该是需要经过实践和时间的洗礼,慢慢从顿悟到成熟的。

作为工程师,我们首先是工程技术人员,我们不是科学家。

我们从事的是工程事业,不是科研项目。

我们制造的是产品,不是在做实验。

那么好的,成熟的设计思想和框架,值得我们好好研究,拿来主义之,模仿之,学习之,烂熟之,实践之。

 

 

嘿嘿,胡言乱语之,大话空话之,仅仅用来警示自己。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
我很高兴回答您的问题!这是一个关于线性方程组的问题,因此涉及数学和计算机科学。我可以为您提供一些基本信息和概念。 线性方程组是一个含有若干个线性方程的集合,其中每个方程都有若干个未知数。例如,下面是一个简单的线性方程组: x + y = 3 2x - y = 0 这个方程组有两个未知数(x 和 y),因此需要两个方程才能解出这些未知数的值。用矩阵表示这个方程组,可以得到以下形式: [1 1][x] [3] [2 -1][y] = [0] 可以将这个方程组表示为 AX = B 的形式,其中 A 是系数矩阵,X 是未知数的向量, B 是常数向量。在本例中,A 是两行两列的矩阵, X 是包含 x 和 y 的向量, B 是两个数字的向量。 直接法是一种解决线性方程组的方法,其中我们使用高斯消元法或矩阵分解法来求解方程组。这些方法涉及到矩阵的操作和数学计算,并且可以得到准确的解。 迭代法是另一种解决线性方程组的方法,其中我们从一个初始的解开始,使用迭代公式来逐步改善解的精度。迭代方法包括 Jacobi 方法、Gauss-Seidel 方法等等。这些方法需要进行数值运算,并且可以得到逐步逼近真实解的解。 误差分析是一种方法,用于确定近似解与真实解之间的误差大小。我们使用范数等术语来描述误差。例如,使用 2-范数来度量向量(或矩阵)的大小,使用相对误差来描述近似解和真实解之间的差异。 我希望这些信息对您有所帮助。如果您有任何其他问题或需要进一步的解释,请告诉我!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞越丛林

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值