CF797F:Mice and Holes(dp + 单调队列优化)

F. Mice and Holes
time limit per test
1.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

One day Masha came home and noticed n mice in the corridor of her flat. Of course, she shouted loudly, so scared mice started to run to the holes in the corridor.

The corridor can be represeted as a numeric axis with n mice and m holes on it. ith mouse is at the coordinate xi, and jth hole — at coordinate pjjth hole has enough room for cj mice, so not more than cj mice can enter this hole.

What is the minimum sum of distances that mice have to go through so that they all can hide in the holes? If ith mouse goes to the hole j, then its distance is |xi - pj|.

Print the minimum sum of distances.

Input

The first line contains two integer numbers nm (1 ≤ n, m ≤ 5000) — the number of mice and the number of holes, respectively.

The second line contains n integers x1, x2, ..., xn ( - 109 ≤ xi ≤ 109), where xi is the coordinate of ith mouse.

Next m lines contain pairs of integer numbers pj, cj ( - 109 ≤ pj ≤ 109, 1 ≤ cj ≤ 5000), where pj is the coordinate of jth hole, and cj is the maximum number of mice that can hide in the hole j.

Output

Print one integer number — the minimum sum of distances. If there is no solution, print -1 instead.

Examples
input
4 5
6 2 8 9
3 6
2 1
3 6
4 7
4 7
output
11
input
7 2
10 20 30 40 50 45 35
-1000000000 10
1000000000 1
output
7000000130
题意:X坐标轴上,有N只老鼠,M个鼠洞,每个鼠洞有一定的容量,求所有老鼠进入鼠洞路径和的最小值。

思路:首先需要知道,最优情况下老鼠回洞的路径是不会发生交叉的,那么可以用dp解决,题解是这样的:dp[i][j]表示前i个洞被j只老鼠占据的最小步数。dp[i][j] = min(dp[i-1][k]+sum[i][j]-sum[i][k]),枚举k从0到j,那么O(n^3)是超时的,考虑到sum[i][j]是定值,且sum[i][k]多次重复枚举了,可以用单调队列优化下。---第一次用List超时了,看来还是用数组模拟快一些。

//reference : meopass
# include <iostream>
# include <cstring>
# include <cstdlib>
# include <algorithm>
# include <cstdio>
using namespace std;
typedef long long LL;
struct node
{
    LL x, v;
    bool operator < (const node&a) const
    {
        return x < a.x;
    }
}hole[5003];
LL mice[5003], sum[5003], pre[5003], dp[5003][5003];
int que[5003];
const int INF = 0x3f3f3f3f;
int main()
{
    int n, m;
    memset(dp, INF, sizeof(dp));
    scanf("%d%d",&n,&m);
    for(int i=1; i<=n; ++i)
        scanf("%I64d",&mice[i]);
    for(int i=1; i<=m; ++i)
        scanf("%I64d%I64d",&hole[i].x, &hole[i].v);
    sort(mice+1, mice+n+1);
    sort(hole+1, hole+m+1);
    for(int i=1; i<=m; ++i)
        pre[i] = pre[i-1] + hole[i].v;//洞容纳量前缀和,装不下所有老鼠直接输出-1。
    if(pre[m] < n) return 0*puts("-1");
    dp[0][0] = 0;
    for(int i=1; i<=m; ++i)
    {
        dp[i][0] = 0;
        int l=0, r=0;
        que[++r] = 0;
        for(int j=1; j<=pre[i]&& j<=n; ++j)
        {
            dp[i][j] = dp[i-1][j];
            sum[j] = sum[j-1] + llabs(mice[j]-hole[i].x);
            while(j-que[l]>hole[i].v) ++l;
            while(l<=r && dp[i-1][que[l]]-sum[que[l]] > dp[i-1][j]-sum[j]) ++l;;
            que[++r] = j;
            dp[i][j] = min(dp[i][j], (LL)sum[j]+dp[i-1][que[l]]-sum[que[l]]);
        }
    }
    printf("%I64d\n",dp[m][n]);
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值