js-数据结构和算法-集合

本文介绍了集合的概念,包括无序且唯一的元素组成,以及如何通过add、remove、has、clear和size等方法进行操作。此外,详细阐述了集合的并集(Union)、交集(Intersection)、差集(Difference)和子集(Subset)的数学定义,并提供了JavaScript模拟Set类的实现示例,展示了如何在实际编程中应用这些集合操作。
摘要由CSDN通过智能技术生成

集合

集合是由一组无序且唯一(即不能重复)的项组成的
集合是一个既没有重复元素,也没有顺序概念的数组。

声明一些集合可用的方法(我们会尝试模拟与ECMAScript 6实现相同的Set类)。

  • add(value):向集合添加一个新的项。
  • remove(value):从集合移除一个值。
  • has(value):如果值在集合中,返回true,否则返回false。
  • clear():移除集合中的所有项。
  • size():返回集合所包含元素的数量。与数组的length属性类似。
  • values():返回一个包含集合中所有值的数组
集合的操作
  • 并集:对于给定的两个集合,返回一个包含两个集合中所有元素的新集合。
  • 交集:对于给定的两个集合,返回一个包含两个集合中共有元素的新集合。
  • 差集:对于给定的两个集合,返回一个包含所有存在于第一个集合且不存在于第二个集
    合的元素的新集合。
  • 子集:验证一个给定集合是否是另一集合的子集。

并集的数学概念,集合A和B的并集,表示为A∪B,定义如下:
A∪B = { x | x ∈ A∨x ∈ B }
意思是x(元素)存在于A中,或x存在于B中

交集的数学概念,集合A和B的交集,表示为A∩B,定义如下:
A∩B = { x | x ∈ A∧x ∈ B }
意思是x(元素)存在于A中,且x存在于B中。

差集的数学概念,集合A和B的差集,表示为AB,定义如下:
AB = { x | x ∈ A ∧ x B }
意思是x(元素)存在于A中,且x不存在于B中

子集的数学概念,集合A是B的子集(或集合B包含
了A),表示为A⊆B,定义如下:
∀x { x ∈ A → x ∈ B }
意思是集合A中的每一个x(元素),也需要存在于B中

function Set() {
  let items = {}
  this.add = function(v) {
    if(!this.has(v)) {
      items[v] = v
      return true
    }
    return false
  }
  this.remove = function(v) {
    if(!this.has(v)) {
      delete items[v]
      return true
    }
    return false
  }
  this.has = function(v) {
    return items.hasOwnProperty(v)
  }
  this.clear = function(v) {
    items = {}
  }
  this.size = function(v) {
    return Object.keys(items).length
  }
  this.values = function(v) {
    return Object.values(items)
  }
  // 并集,求和
  this.union = function(set) {
    let unionSet = new Set()
    let itemsValues = this.values()
    for (let i = 0; i < itemsValues.length; i++) {
      unionSet.add(itemsValues[i])
    }
    let setValues = set.values()
    for (let i = 0; i < setValues.length; i++) {
      unionSet.add(setValues[i])
    }
    return unionSet
  }
  // 交集,包含
  this.interSection = function(set) {
    let resSet = new Set()
    let itemsValues = this.values()
    for (let i = 0; i < itemsValues.length; i++) {
      if(set.has(itemsValues[i])) {
        resSet.add(itemsValues[i])
      }
    }
    return resSet
  }
  // 差集,不包含
  this.difference = function(set) {
    let resSet = new Set()
    let itemsValues = this.values()
    for (let i = 0; i < itemsValues.length; i++) {
      if(!set.has(itemsValues[i])) {
        resSet.add(itemsValues[i])
      }
    }
    return resSet
  }
  // 是否是set的子集
  this.isSubSet = function(set) {
    if (set.size < this.size ) {
      return false
    }
    let itemsValues = this.values()
    for (let i = 0; i < itemsValues.length; i++) {
      if(!set.has(itemsValues[i])) {
        return false
      }
    }
    return true
  }
}
// var setA = new Set();
// setA.add(1);
// setA.add(2);
// setA.add(3);
// var setB = new Set();
// setB.add(3);
// setB.add(4);
// setB.add(5);
// setB.add(6);
// var unionAB = setA.union(setB);
// console.log(unionAB.values());

// var setA = new Set();
// setA.add(1);
// setA.add(2);
// setA.add(3);
// var setB = new Set();
// setB.add(2);
// setB.add(3);
// setB.add(4);
// var intersectionAB = setA.interSection(setB);
// console.log(intersectionAB.values());

// var setA = new Set();
// setA.add(1);
// setA.add(2);
// setA.add(3);
// var setB = new Set();
// setB.add(2);
// setB.add(3);
// setB.add(4);
// var differenceAB = setA.difference(setB);
// console.log(differenceAB.values());

var setA = new Set();
setA.add(1);
setA.add(2);
var setB = new Set();
setB.add(1);
setB.add(2);
setB.add(3);
var setC = new Set();
setC.add(2);
setC.add(3);
setC.add(4);
console.log(setA.isSubSet(setB));
console.log(setA.isSubSet(setC));
weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值