集合
集合是由一组无序且唯一(即不能重复)的项组成的
集合是一个既没有重复元素,也没有顺序概念的数组。
声明一些集合可用的方法(我们会尝试模拟与ECMAScript 6实现相同的Set类)。
- add(value):向集合添加一个新的项。
- remove(value):从集合移除一个值。
- has(value):如果值在集合中,返回true,否则返回false。
- clear():移除集合中的所有项。
- size():返回集合所包含元素的数量。与数组的length属性类似。
- values():返回一个包含集合中所有值的数组
集合的操作
- 并集:对于给定的两个集合,返回一个包含两个集合中所有元素的新集合。
- 交集:对于给定的两个集合,返回一个包含两个集合中共有元素的新集合。
- 差集:对于给定的两个集合,返回一个包含所有存在于第一个集合且不存在于第二个集
合的元素的新集合。 - 子集:验证一个给定集合是否是另一集合的子集。
并集的数学概念,集合A和B的并集,表示为A∪B,定义如下:
A∪B = { x | x ∈ A∨x ∈ B }
意思是x(元素)存在于A中,或x存在于B中
交集的数学概念,集合A和B的交集,表示为A∩B,定义如下:
A∩B = { x | x ∈ A∧x ∈ B }
意思是x(元素)存在于A中,且x存在于B中。
差集的数学概念,集合A和B的差集,表示为AB,定义如下:
AB = { x | x ∈ A ∧ x B }
意思是x(元素)存在于A中,且x不存在于B中
子集的数学概念,集合A是B的子集(或集合B包含
了A),表示为A⊆B,定义如下:
∀x { x ∈ A → x ∈ B }
意思是集合A中的每一个x(元素),也需要存在于B中
function Set() {
let items = {}
this.add = function(v) {
if(!this.has(v)) {
items[v] = v
return true
}
return false
}
this.remove = function(v) {
if(!this.has(v)) {
delete items[v]
return true
}
return false
}
this.has = function(v) {
return items.hasOwnProperty(v)
}
this.clear = function(v) {
items = {}
}
this.size = function(v) {
return Object.keys(items).length
}
this.values = function(v) {
return Object.values(items)
}
// 并集,求和
this.union = function(set) {
let unionSet = new Set()
let itemsValues = this.values()
for (let i = 0; i < itemsValues.length; i++) {
unionSet.add(itemsValues[i])
}
let setValues = set.values()
for (let i = 0; i < setValues.length; i++) {
unionSet.add(setValues[i])
}
return unionSet
}
// 交集,包含
this.interSection = function(set) {
let resSet = new Set()
let itemsValues = this.values()
for (let i = 0; i < itemsValues.length; i++) {
if(set.has(itemsValues[i])) {
resSet.add(itemsValues[i])
}
}
return resSet
}
// 差集,不包含
this.difference = function(set) {
let resSet = new Set()
let itemsValues = this.values()
for (let i = 0; i < itemsValues.length; i++) {
if(!set.has(itemsValues[i])) {
resSet.add(itemsValues[i])
}
}
return resSet
}
// 是否是set的子集
this.isSubSet = function(set) {
if (set.size < this.size ) {
return false
}
let itemsValues = this.values()
for (let i = 0; i < itemsValues.length; i++) {
if(!set.has(itemsValues[i])) {
return false
}
}
return true
}
}
// var setA = new Set();
// setA.add(1);
// setA.add(2);
// setA.add(3);
// var setB = new Set();
// setB.add(3);
// setB.add(4);
// setB.add(5);
// setB.add(6);
// var unionAB = setA.union(setB);
// console.log(unionAB.values());
// var setA = new Set();
// setA.add(1);
// setA.add(2);
// setA.add(3);
// var setB = new Set();
// setB.add(2);
// setB.add(3);
// setB.add(4);
// var intersectionAB = setA.interSection(setB);
// console.log(intersectionAB.values());
// var setA = new Set();
// setA.add(1);
// setA.add(2);
// setA.add(3);
// var setB = new Set();
// setB.add(2);
// setB.add(3);
// setB.add(4);
// var differenceAB = setA.difference(setB);
// console.log(differenceAB.values());
var setA = new Set();
setA.add(1);
setA.add(2);
var setB = new Set();
setB.add(1);
setB.add(2);
setB.add(3);
var setC = new Set();
setC.add(2);
setC.add(3);
setC.add(4);
console.log(setA.isSubSet(setB));
console.log(setA.isSubSet(setC));