46、考虑一个理想针孔相机,其焦距为 5mm。每个像素尺寸为 0.02mm × 0.02mm,图像主点位于像素坐标 (500, 500) 处。像素坐标从图像左上角的 (0, 0) 开始。(a) 此相机配置的 3 × 3 相机校准矩阵 K 是什么?(b) 假设世界坐标系与相机坐标系对齐(即它们的原点相同且轴对齐),且原点位于相机针孔处,那么表示相机坐标系和世界坐标系之间的外部刚体变换的 3×4 矩阵是什么?(c) 结合前两个问题的结果,计算场景点 (100, 150, 800) 在图像坐标中的投影。
(a) 相机校准矩阵 $ K $ 一般形式为
$$ K = \begin{bmatrix} f/dx & 0 & u0 \ 0 & f/dy & v0 \ 0 & 0 & 1 \end{bmatrix} $$
其中 $ f $ 为焦距,$ dx $、$ dy $ 为像素在 $ x $、$ y $ 方向的尺寸,$ (u0, v0) $ 为主点坐标。
代入数值可得
$$ K = \begin{bmatrix} 5/0.02 & 0 & 500 \ 0 & 5/0.02 & 500 \ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 250 & 0 & 500 \ 0 & 250 & 500 \ 0 & 0 & 1 \end{bmatrix} $$
(b) 由于世界坐标系与相机坐标系对齐,外部刚体变换矩阵为
$$ \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{bmatrix} $$
(c) 先将场景点表示为齐次坐标 $ (100, 150, 800, 1) $,
投影矩阵 $ P = K \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 &

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



