You are given a sorted array a_1, a_2, \dots, a_na1,a2,…,an (for each index i > 1i>1 condition a_i \ge a_{i-1}ai≥ai−1 holds) and an integer kk.
You are asked to divide this array into kk non-empty consecutive subarrays. Every element in the array should be included in exactly one subarray.
Let max(i)max(i) be equal to the maximum in the ii-th subarray, and min(i)min(i) be equal to the minimum in the ii-th subarray. The cost of division is equal to \sum\limits_{i=1}^{k} (max(i) - min(i))i=1∑k(max(i)−min(i)). For example, if a = [2, 4, 5, 5, 8, 11, 19]a=[2,4,5,5,8,11,19] and we divide it into 33 subarrays in the following way: [2, 4], [5, 5], [8, 11, 19][2,4],[5,5],[8,11,19], then the cost of division is equal to (4 - 2) + (5 - 5) + (19 - 8) = 13(4−2)+(5−5)+(19−8)=13.
Calculate the minimum cost you can obtain by dividing the array aa into kk non-empty consecutive subarrays.
Input
The first line contains two integers nn and kk (1 \le k \le n \le 3 \cdot 10^51≤k≤n≤3⋅105).
The second line contains nn integers a_1, a_2, \dots, a_na1,a2,…,an (1 \le a_i \le 10^91≤ai≤109, a_i \ge a_{i-1}ai≥ai−1).
Output
Print the minimum cost you can obtain by dividing the array aa into kk nonempty consecutive subarrays.
Examples
Input
6 3 4 8 15 16 23 42
Output
12
Input
4 4 1 3 3 7
Output
0
Input
8 1 1 1 2 3 5 8 13 21
Output
20
Note
In the first test we can divide array aa in the following way: [4, 8, 15, 16], [23], [42][4,8,15,16],[23],[42].
#include<iostream>
using namespace std;
#include<string>
#include<algorithm>
#pragma warning (disable:4996)
#include <climits>
#include <vector>
int a[1000000];
int d[1000000];
bool cmp(int a, int b);
int main() {
int n, k;
cin >> n >> k;
int sum = 0;
for (int cnt = 0; cnt < n; cnt++) {
scanf("%d" , &a[cnt]);
}
d[0] = 0;
for (int cnt = 1; cnt < n; cnt++) {
d[cnt] = a[cnt] - a[cnt - 1];
sum += d[cnt];
}
sort(d, d + n, cmp);
for (int cnt = 0; cnt < k - 1; cnt++) {
sum -= d[cnt];
}
cout << sum;
return 0;
}
bool cmp(int a, int b) {
return a > b;
}