KMP算法

KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。具体实现就是实现一个next()函数,函数本身包含了模式串的局部匹配信息。时间复杂度O(m+n)。

一个解释很详细的博客:
KMP算法详解

代码实现:

package KMP;

public class KMP {
    public static void main(String[] args) {
    }
    public static int KMP(String ts , String ps){
        char[] t = ts.toCharArray();
        char[] p = ps.toCharArray();
        int[] next = new int[p.length];
        int i=0 ; //主串的位置
        int j=0;  //模式串的位置

        next = getNext(p);  //获取next数组

        while(i<t.length&&j<p.length){
            if(j==-1||t[i]==p[j]){ //当j=-1时,代表第一位就不匹配,所有要移动的
                                   // 是i,j也要归0
                i++;
                j++;                
            }else{
                j = next[j];  //不匹配了,j移到k的位置
            }
        }

        if(j == p.length){
            return i-j;
        }else {
            return -1;
        }
    }

    private static int[] getNext(char[] p){
        int[] next = new int[p.length];
        next[0]=-1;
        int j =0;
        int k=-1;
        while(j<p.length-1){
            if(k==-1||p[j]==p[k]){
                if(p[++j]==p[++k]){
                    next[j]=next[k];
                }else{
                    next[j]=k;
                }
            }else{
                k = next[k];
            }
        }
        return next;

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值