gcd及exgcd详解

本文详细介绍了最大公因数gcd的概念、辗转相除法及其代码实现,并探讨了扩展欧几里得算法exgcd的原理、证明以及在求解线性同余方程中的应用。
摘要由CSDN通过智能技术生成

前言

由于复习CSP,我的blog咕咕咕了一个多月。大有洛谷的风范 今天,我来写一下自己学习gcd及exgcd的感受。

详解gcd及exgcd

gcd

什么是gcd

gcd指的是Greatest Common Divisor,就是两个数的最大公因数。

通俗来讲, gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b)就是最大化一个 A n s Ans Ans,使得 A n s ∣ a , A n s ∣ b Ans|a\\,Ans|b Ansa,Ansb

举个例子:

20 20 20的因数有 1 , 2 , 4 , 5 , 10 , 20 1,2,4,5,10,20 1,2,4,5,10,20

15 15 15的因数有 1 , 3 , 5 , 15 1,3,5,15 1,3,5,15

所以 gcd ⁡ ( 20 , 15 ) = 5 \gcd(20,15)=5 gcd(20,15)=5

如何求gcd

想必各位在高中都学过辗转相除法和更相减损之术,这里只讲辗转相除法。

辗转相除法

首先不妨设 x ≤ y x\le y xy,则 gcd ⁡ ( x , y ) = gcd ⁡ ( x , x + y ) = gcd ⁡ ( x , y − x ) \gcd(x,y)=\gcd(x,x+y)=\gcd(x,y-x) gcd(x,y)<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值