gcd及exgcd详解

前言

由于复习CSP,我的blog咕咕咕了一个多月。大有洛谷的风范 今天,我来写一下自己学习gcd及exgcd的感受。

详解gcd及exgcd

gcd

什么是gcd

gcd指的是Greatest Common Divisor,就是两个数的最大公因数。

通俗来讲, gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b)就是最大化一个 A n s Ans Ans,使得 A n s ∣ a , A n s ∣ b Ans|a\\,Ans|b Ansa,Ansb

举个例子:

20 20 20的因数有 1 , 2 , 4 , 5 , 10 , 20 1,2,4,5,10,20 1,2,4,5,10,20

15 15 15的因数有 1 , 3 , 5 , 15 1,3,5,15 1,3,5,15

所以 gcd ⁡ ( 20 , 15 ) = 5 \gcd(20,15)=5 gcd(20,15)=5

如何求gcd

想必各位在高中都学过辗转相除法和更相减损之术,这里只讲辗转相除法。

辗转相除法

首先不妨设 x ≤ y x\le y xy,则 gcd ⁡ ( x , y ) = gcd ⁡ ( x , x + y ) = gcd ⁡ ( x , y − x ) \gcd(x,y)=\gcd(x,x+y)=\gcd(x,y-x) gcd(x,y)=gcd(x,x+y)=gcd(x,yx),所以 gcd ⁡ ( x , y ) = g c d ( y m o d    x , x ) \gcd(x, y) = gcd(y \mod x, x) gcd(x,y)=gcd(ymodx,x),因此可以递归求解。
复杂度证明:因为 y m o d    x ≤ x , x ≤ y y \mod x \le x ,x \le y ymodxx,xy,所以 y m o d    x < y / 2 y \mod x < y / 2 ymodx<y/2。因此在最坏情况下为 O ( n l o g n ) O(nlogn) O(nlogn)

另外说一句:最坏的情况恰好是斐波那契额数列的相邻两个(细思极恐)

代码

int gcd(int a,int b)
{
	if(!b)
	{
		return a;
	}
	return gcd(b,a%b);
}

exgcd

啥是exgcd

exgcd可以概括成求形如

a x + b y = c ax+by=c ax+by=c

的方程。

当存在 gcd ⁡ ( a , b ) ∣ c \gcd(a,b)|c gcd(a,b)c时,存在解。

也就是说,这个exgcd可以用来求解方程 a x + b y = gcd ⁡ ( a , b ) ax +by = \gcd(a, b) ax+by=gcd(a,b)

exgcd的证明

我们命 a = b , b = a m o d    b a=b, b=a \mod b a=b,b=amodb,则有方程 b × x 1 + ( a m o d    b ) × y 1 = g c d ( b , a m o d    b ) b \times x1 +(a \mod b) \times y1 = gcd(b, a \mod b) b×x1+(amodb)×y1=gcd(b,amodb)

又因为 gcd ⁡ ( a , b ) = gcd ⁡ ( a m o d    b ) \gcd(a, b) = \gcd(a \mod b) gcd(a,b)=gcd(amodb),且 a m o d    b = a − b × ⌊ a / b ⌋ a\mod b = a - b \times \lfloor a / b \rfloor amodb=ab×a/b

b × x 1 + ( a − b ∗ ⌊ a / b ⌋ ) × y 1 = gcd ⁡ ( a , b ) b \times x1 + (a - b * \lfloor a / b \rfloor ) \times y1 =\gcd(a, b) b×x1+(aba/b)×y1=gcd(a,b)

整理得: a × y 1 + b ∗ × ( x 1 − ⌊ a / b ⌋ × y 1 ) = gcd ⁡ ( a , b ) a \times y1 +b *\times (x1 -\lfloor a / b \rfloor \times y1) = \gcd(a, b) a×y1+b×(x1a/b×y1)=gcd(a,b)

所以原方程中: x = y 1 , y = x 1 − ⌊ a / b ⌋ × y 1 x = y1, y = x1 - \lfloor a / b\rfloor \times y1 x=y1,y=x1a/b×y1。于是我们只要递归求出 x 1 , y 1 x1, y1 x1,y1就能求出 x , y x, y x,y

代码

void exgcd(ll a, ll b, ll& x, ll& y, ll& c)
{
	if(!b)
	{
		y=0;
		x=1;
		c=a;
		return;
	}
	exgcd(b,a%b,y,x);
	y-=a/b*x;
}
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值