
用户画像
文章平均质量分 84
风情客家__
简述需要300字以内_(¦3」∠)_
展开
-
北京银行:基于数字化的标签体系创新模式
2021年12月,中国人民银行印发《金融科技发展规划(2022—2025年)》,提出健全金融科技治理体系、充分释放数据要素潜能、打造新型数字基础设施等重点任务。北京金融科技产业联盟开设“”专栏,以《规划》为牵引,通过优秀案例展示产业各方在实践中取得的成果,促进机构互学互鉴。转载 2023-03-27 21:06:38 · 687 阅读 · 0 评论 -
银行客户画像搭建与应用
1.1 感性认识目标:描述客户、了解客户、认识客户、理解客户展现:图像、文本、数据、语音形式:结构化、非结构化标准:系统信息知识验证:统计检验、实事检验1.2 客户画像定义客户画像是对客户信息在特定业务场景下的系统描述,是对客户数据的建模1.3 客户画像与标签客户特征:客户信息数据的结构化处理客户标签:对客户特征的业务描述客户标签是客户画像的元素,客户画像的搭建需要一个高效、全面的标签体系客户画像:客户标签在特定业务目标下的有序集合1.4 银行标签体系。转载 2023-03-16 18:33:46 · 2374 阅读 · 0 评论 -
推荐系统简介
参考文章:推荐系统之用户画像1. 推荐系统简介推荐系统是数据挖掘的一个重要部分,能够实现海量数据信息的快速、全面、准确过滤。推荐系统是信息过滤系统的一个子集。用Spark平台设计了一个基于物品的协同过滤(Item-CF)算法的商品推荐系统,并将其应用在Movie Lens数据集上运行测试。通常大型推荐系统一般都分为召回和排序两个阶段。因为全量物品(Item)通常数量非常大,无法为一个用户(User)逐一计算每一个物品(Item)的评分,这时候就需要一个召回阶段,其实就是预先筛选一部分物品转载 2020-06-15 18:00:21 · 655 阅读 · 0 评论 -
spark标签计算及用户画像应用
参考文章:Spark(二)—— 标签计算、用户画像应用一、标签计算数据86913510 {"reviewPics":[],"extInfoList":null,"expenseList":null,"reviewIndexes":[1,2],"scoreList":[{"score":5,"title":"环境","desc":""},{"score":5,"title":"服务","desc":""},{"score":5,"title":"口味","desc":""}]}8691351转载 2020-06-16 16:57:35 · 1338 阅读 · 0 评论 -
用户画像之Spark ML实现
参考文章:用户画像之Spark ML实现1. Spark ML简单介绍 Spark ML是面向DataFrame编程的。Spark的核心开发是基于RDD(弹性分布式数据集),但是RDD,但是RDD的处理并不是非常灵活,如果要做一些结构化的处理,将RDD转换成DataFrame,DataFrame实际上就是行对象的RDD+schema,类似于原本的文本数据,加上schema,做一下结构的转换就变成数据库里面的表,表是有元数据的,有字段有类型。所以DataFrame处理起来更加灵活。要...转载 2020-06-17 10:10:22 · 1331 阅读 · 0 评论 -
spark-用户画像demo
参考文章:如何基于Spark进行用户画像spark-用户画像demon转载 2020-06-16 09:40:01 · 2426 阅读 · 0 评论 -
用户画像常用算法
决策树1、决策树,是一种分类算法和回归算法(这里只介绍分类算法)2、决策树算法的构建分为3个部分:特征的选择,决策树的生成,决策树的剪枝;(主要参考李航的《统计学习方法》第五章) a、特征的选择—-选择使信息增益最大的特征;即选择一个分类特征必须是分类确定性更高,此特征才是更好的; b、决策树的生成—ID3,C4.5算法,此时用迭代的方式构建决策树;注意此时的决策树,因为每次选的都是局部最优解,所以是过拟合的; c、决策树的剪枝—决策树剪枝是为了防止过拟合,根据全局c...转载 2020-06-17 10:55:12 · 4079 阅读 · 0 评论 -
用户画像简介
参考文章:推荐系统——用户画像1. 用户画像1.1 用户画像定义用户画像:也叫用户信息标签化、客户标签;根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。从电商的角度看,根据你在电商网站上所填的信息和你的行为,可以用一些标签把你描绘出来,描述你的标签就是用户画像。构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。用户画像不是推荐系统的目的,而是在构建推荐系统的过程中产生的一个关键环节的副产品,包括但不仅限于用户的注册资料、原创 2020-06-15 15:49:21 · 3855 阅读 · 0 评论 -
银行用户画像简介
一个用户社会身份为20岁,但他喜欢中年人的偏好风格,在使用app购买理财、保险产品的时候,表现出的真实偏好为30-40岁,对于这样使用产品时表现出的用户心智和真实年龄不相符合的用户,如果只采用上传的基本属性,给他推荐年轻人喜欢的产品,是不是很难命中个体用户的兴趣呢?行为属性记录的是用户的全部单点行为,用户的单点行为包括启动、登录、浏览、点击、交易等非常多,而且跟不同的产品,不同的模块交互,不同的时间窗选取,行为就更加复杂了,如何能够全面的梳理,可以按照“产品*功能模块*用户单点行为*时间”四大要素来组织。转载 2023-03-16 18:21:52 · 1305 阅读 · 0 评论 -
用户画像与产品画像简介
银行应当快速构建以传统线下网点、智慧网点、手机银行、网银、各类APP、自助银行、微信银行等为一体的全渠道融合运营的新格局,并通过客户数据中台、营销中台的建设,将用户在不同触点端的基础属性数据、前端行为数据、业务数据以及对话数据进行汇聚,并通过前端埋点技术、自然语言解析等技术对用户意图进行挖掘与洞察,形成全渠道融合的用户超级画像,从而制定更精准的营销分层策略。基于用户画像体系,在精准营销上分析不同渠道的用户,哪些方面是有特性的,比如年龄段,性别,地域,收入,偏好等,有了这样的分析,可以选择相应的人群投放。转载 2023-03-16 18:17:25 · 1821 阅读 · 0 评论