Estimation Theory 学习笔记 [Steven M. Kay][ch.1-ch.3]

Estimation Theory [Steven M. Kay] 学习笔记


前前言

#个人学习笔记 #未考虑自己以外的读者体验 #有错请指正
教材:Steven M. Kay, Fundamentals of statistical signal processing: estimation theory[M]. Prentice-Hall, Inc., 1993.


Estimation Theory

前言

  • primary focas: 获得可以在数字计算机上运算的最优估计算法

  • data sets 是连续时间信号的采样,或者数据点序列

  • 前序学科:数字信号处理、概率和随机过程、线性和矩阵算数

  • overview:2-9章是经典估计,10-13是Bayesian估计。先讨论标量参数,再拓展到矢量参数。

Chapter 1

1.2 估计的数学问题

  • PDF以未知数 θ \theta θ为参数。因此有一族PDF,当参数 θ \theta θ不同,数据集合(data set)的值不同。

    用分号表示这种关系:
    p ( x [ 0 ] , x [ 1 ] , . . . . x [ n ] ; θ ) p(x[0],x[1],....x[n];\theta) p(x[0],x[1],....x[n];θ)
    因此,可以根据 x \boldsymbol x x的值推断出 θ ^ \hat \theta θ^的值。

  • 实际问题中并没有给出PDF,而是要选择一个不仅与问题的约束和先验知识一致的,而且在数学上也容易处理的PDF。

  • classical estimation&Bayesian estimation

    • classical estimation:感兴趣的参数假定为确定的但是未知

    • Bayesian estimation:感兴趣的参数是随机变量

      如:先验地知道,感兴趣的参数 θ \theta θ在是 [ a , b ] [a,b] [a,b]中的一个随机变量, θ \theta θ不再是一个确定的参数,而且指定PDF, θ \theta θ即可在 [ a , b ] [a,b] [a,b]之间均匀分布。

      则数据由联合PDF描述:

    p ( x , θ ) = p ( x ∣ θ ) p ( θ ) p(\boldsymbol x,\theta)=p(\boldsymbol x |\theta)p(\theta) p(x,θ)=p(xθ)p(θ)

    其中, p ( θ ) p(\theta) p(θ)是先验PDF,概括了在数据观测以前关于 θ \theta θ的先验知识, p ( x ∣ θ ) p(\boldsymbol x|\theta) p(xθ)是条件PDF,概括了在已知 θ \theta θ的条件下由数据 x \boldsymbol x x提供的知识。

Chapter 2 最小方差无偏估计

2.1&2.2

  • 利用最小均方误差MSE(通常导出的是不可实现的估计量)作为更为自然的误差准则

  • 最小方差无偏估计(MVU)存在:利用Cramer-Rao Bound和充分统计概念,求出估计器

    MVU不存在:更多限制条件(数据为线性数据)的估计器更容易实现,但是是次优的评估器

2.3 无偏估计

  • 定义:参数 θ \theta θ是在区间 a < θ < b a<\theta<b a<θ<b上的任何值,无论 θ \theta θ的真值是多少,估计量的均值都等于真值。

    数学表示:如果
    E ( θ ^ ) = θ ,   a < θ < b E(\hat \theta)=\theta,\ a<\theta<b E(θ^)=θ, a<θ<b
    那么估计器 θ ^ \hat\theta θ^是无偏的,其中 ( a , b ) (a,b) (a,b)表示 θ \theta θ的可能取值范围。注:对所有 θ \theta θ E ( θ ^ ) = θ E(\hat\theta)=\theta E(θ^)=θ

  • θ ^ = g ( x ) \hat\theta=g(x) θ^=g(x),其中 x = [ x [ 0 ] , x [ 1 ] , . . . , x [ N − 1 ] ] T \boldsymbol x=[x[0],x[1],...,x[N-1]]^T x=[x[0],x[1],...,x[N1]]T,这要求
    E ( θ ^ ) = ∫ g ( x ) p ( x ; θ ) = θ ,   f o r   a l l   θ E(\hat\theta)=\int g(\bold x)p(\boldsymbol x;\theta)=\theta,\ for\ all\ \theta E(θ^)=g(x)p(x;θ)=θ, for all θ

  • 如果估计器是有偏的,则偏差定义为
    b ( θ ) = E ( θ ^ ) − θ b(\theta)=E(\hat\theta)-\theta b(θ)=E(θ^)θ

2.4 最小方差准则

  • 均方误差mean square error定义
    m s e ( θ ^ ) = E [ ( θ ^ − θ ) 2 ] = E { [ ( θ ^ − E ( θ ^ ) ) + ( E ( θ ^ ) − θ ) ] 2 } = v a r ( θ ^ ) + [ E ( θ ^ ) − θ ) ] 2 = v a r ( θ ^ ) + b 2 ( θ ) \begin{aligned} \mathrm{mse}(\hat\theta)&=E[(\hat\theta-\theta)^2] \\ &=E\{[(\hat\theta-E(\hat\theta))+(E(\hat\theta)-\theta)]^2\} \\ &=\mathrm{var}(\hat\theta)+[E(\hat\theta)-\theta)]^2 \\ &=\mathrm{var}(\hat\theta)+b^2(\theta) \end{aligned} mse(θ^)=E[(θ^θ)2]=E{[(θ^E(θ^))+(E(θ^)θ)]2}=var(θ^)+[E(θ^)θ)]2=var(θ^)+b2(θ)

  • 任何与偏差 b ( θ ) b(\theta) b(θ)有关的估计器都不可实现。

  • mse是不可实现的估计器,因为不可写成数据的唯一函数。

  • MSE不可用 → \rightarrow 约束 b ( θ ) = 0 b(\theta)=0 b(θ)=0,求 v a r ( θ ) \mathrm{var}(\theta) var(θ)最小的估计器。 ⇒ \Rightarrow 最小方差无偏估计MVU

2.5 MVU的存在性

  • MVU不一定存在

在这里插入图片描述

2.6 确定最小方差无偏估计

  1. 确定CRLB,然后检查是否有 θ ^ \hat\theta θ^满足CRLB(chapter3、4)

  2. 应用RBLS定理(chpter5)

  3. 进一步限制不仅是无偏的们还是线性的,然后在这些限制中找出最小方差无偏估计(chapter6)

2.7 拓展到矢量

  • 未知参数矢量为 θ = [ θ 1 θ 2 . . . θ p ] T \boldsymbol{\theta}=[\theta_1 \theta_2...\theta_p]^T θ=[θ1θ2...θp]T,则无偏估计器 θ ^ = [ θ ^ 1 θ ^ 2 . . . θ ^ p ] T \boldsymbol{\hat\theta}=[\hat\theta_1\hat\theta_2...\hat\theta_p]^T θ^=[θ^1θ^2...θ^p]T满足
    E ( θ ^ i ) = θ i a i < θ i < b i E(\hat\theta_i)=\theta_i\quad a_i<\theta_i<b_i E(θ^i)=θiai<θi<bi
    定义
    E ( θ ^ ) = [ E ( θ ^ 1 ) E ( θ ^ 2 ) ⋮ E ( θ ^ p ) ] E(\hat{\boldsymbol{\theta}})=\left[ \begin{array}{c} E\left(\hat{\theta}_{1}\right) \\ E\left(\hat{\theta}_{2}\right) \\ \vdots \\ E\left(\hat{\theta}_{p}\right) \end{array} \right] E(θ^)=E(θ^1)E(θ^2)E(θ^p)

    也可定义为
    E ( θ ^ ) = θ E(\hat{\boldsymbol\theta})=\boldsymbol \theta E(θ^)=θ

Chapter 3

3.1&3.2

  • CRLB可以确定一个estimator是MVU,或者给估计器性能比较一个benchmark。

  • 如果不存在可以到达CRLB的估计器,可以渐进达到(in chapter 7)

    1. 标量参数的CRLB(3.6),如果满足(3.7)则可以达到下界;

    2. 另一种确定CRLB(3.12)

    3. 估计参数是一个函数时CRLB(3.16)

3.3 估计器精度考虑

  • 估计精度与PDF直接相关:PDF对参数的依赖性越强,所得估计精度越高。

  • PDF作为未知参数的函数时( x \mathbf{x} x固定),为似然函数。

  • 似然函数的尖锐程度决定了估计未知参数的精度。用对数似然函数的负二阶导数度量尖锐性。

    对数似然函数的平均曲率:
    − E [ ∂ 2 ln ⁡ p ( x [ 0 ] ; A ) ∂ A 2 ] -E\left[\frac{\partial^{2} \ln p(x[0] ; A)}{\partial A^{2}}\right] E[A22lnp(x[0];A)]

3.4 CRLB

  • 定理:

    正则条件——假设PDF p ( x ; θ ) p(\boldsymbol x;\theta) p(x;θ)满足
    E [ ∂ ln ⁡ p ( x ; θ ) ∂ θ ] = 0 f o r   a l l   θ E\left[\frac{\partial \ln p(\boldsymbol x ; \theta)}{\partial \theta}\right]=0\quad for\ all\ \theta E[θlnp(x;θ)]=0for all θ
    其中,期望是对 p ( x ; θ ) p(\mathbf x;\theta) p(x;θ)求得。

    下界——则任何无偏估计器 θ ^ \hat\theta θ^的方差一定满足
    var ⁡ ( θ ^ ) ⩾ 1 − E [ ∂ 2 ln ⁡ p ( x ; θ ) ∂ θ 2 ] (3.6) \operatorname{var}(\hat{\theta}) \geqslant \frac{1}{-E\left[\frac{\partial^{2} \ln p(\mathbf{x} ; \theta)}{\partial \theta^{2}}\right]}\tag{3.6} var(θ^)E[θ22lnp(x;θ)]1(3.6)
    其中,导数是在 θ \theta θ的真值处计算。

    MVUE——对于某个函数 g g g I I I,当且仅当
    ∂ ln ⁡ p ( x ; θ ) ∂ θ = I ( θ ) ( g ( x ) − θ ) (3.7) \frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}=I(\theta)(g(\mathbf{x})-\theta)\tag{3.7} θlnp(x;θ)=I(θ)(g(x)θ)(3.7)
    时,对所有 θ \theta θ达到下界的unbiased estimator可求。这个估计器就是 θ ^ = g ( x ) \hat\theta=g(\mathbf x) θ^=g(x),且是MVUE,最小方差是 1 I ( θ ) \frac{1}{I(\theta)} I(θ)1.

  • 上面的数学期望还可以由下式给出
    E [ ∂ 2 ln ⁡ p ( x ; θ ) ∂ θ 2 ] = ∫ ∂ 2 ln ⁡ p ( x ; θ ) ∂ θ 2 p ( x ; θ ) d x E\left[\frac{\partial^2 \ln p(\boldsymbol x ; \theta)}{\partial \theta^2}\right]=\int \frac{\partial^2 \ln p(\mathbf{x} ; \theta)}{\partial \theta^2}p(\mathbf x;\theta) \mathrm d \mathbf x E[θ22lnp(x;θ)]=θ22lnp(x;θ)p(x;θ)dx

  • Fisher Information—— I ( θ ) I(\theta) I(θ)
    I ( θ ) = − E [ ∂ 2 ln ⁡ p ( x ; θ ) ∂ θ 2 ] I(\theta)=-E\left[\frac{\partial^{2} \ln p(\mathbf{x} ; \theta)}{\partial \theta^{2}}\right] I(θ)=E[θ22lnp(x;θ)]
    直观理解:信息越多,下限越低。具有信息测度的基本性质:

    1. 非负的
    2. 独立观测是可加的
  • 对于无法达到CRLB下限条件的例子中,不存在无偏且达到CRLB的估计器。但是MVU仍可能存在,目前只是无法确定MVU存在与否,Chapter5的充分统计量将解决此条件下MVU如果存在并如何求问题。

  • Efficient——达到CRLB的估计器称为efficient。

  • 另一种CRLB表示:
    var ⁡ ( θ ^ ) ⩾ 1 E [ ( ∂ ln ⁡ p ( x ; θ ) ∂ θ ) 2 ] (3.12) \operatorname{var}(\hat{\theta}) \geqslant \frac{1}{E\left[\left(\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right)^{2}\right]}\tag{3.12} var(θ^)E[(θlnp(x;θ))2]1(3.12)
    因为恒等式 E [ ( ∂ ln ⁡ p ( x ; θ ) ∂ θ ) 2 ] = − E [ ∂ 2 ln ⁡ p ( x ; θ ) ∂ θ 2 ] E\left[\left(\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right)^{2}\right]=-E\left[\frac{\partial^{2} \ln p(\mathbf{x} ; \theta)}{\partial \theta^{2}}\right] E[(θlnp(x;θ))2]=E[θ22lnp(x;θ)]

  • 由于fisher信息对于独立观测是可加的,则对 N N N个IID观测的CRLB是单次观测的 1 N \frac{1}{N} N1

3.5 WGN中的一般CRLB

  • Example: x [ n ] = s [ n ; θ ] + w [ n ] n = 0 , 1 , . . . , N − 1 x[n]=s[n;\theta]+w[n] \quad n=0,1,...,N-1 x[n]=s[n;θ]+w[n]n=0,1,...,N1
  • Example3.5: s [ n ; f 0 ] = A cos ⁡ ( 2 π f 0 n + ϕ ) 0 < f 0 < 1 2 s[n;f_0]=A\cos(2\pi f_0n+\phi) \quad 0<f_0<\frac{1}{2} s[n;f0]=Acos(2πf0n+ϕ)0<f0<21

3.6 参数变形

  • 已知参数 θ \theta θ的CRLB,计算 α = g ( θ ) \alpha=g(\theta) α=g(θ)的CRLB:
    var ⁡ ( α ^ ) ⩾ ( ∂ g ∂ θ ) 2 − E [ ∂ 2 ln ⁡ p ( x ; θ ) ∂ θ 2 ] (3.16) \operatorname{var}(\hat{\alpha}) \geqslant \frac{\left(\frac{\partial g}{\partial \theta}\right)^{2}}{-E\left[\frac{\partial^{2} \ln p(\mathbf{x} ; \theta)}{\partial \theta^{2}}\right]} \tag{3.16} var(α^)E[θ22lnp(x;θ)](θg)2(3.16)

  • 非线性变换会破坏估计器的有效性。线性(仿射affine)变换能够保持有效性。

    即: θ ^ \hat\theta θ^ θ \theta θ的有效估计器,则 g ( θ ) = a θ + b g(\theta)=a\theta+b g(θ)=aθ+b的有效估计器满足 g ( θ ) ^ = g ( θ ^ ) = a θ ^ + b \widehat{g(\theta)}=g(\hat\theta)=a\hat\theta+b g(θ) =g(θ^)=aθ^+b.

  • 对于非线性变换,如果数据量足够大,则估计器的有效性也可以近似保持。

在这里插入图片描述

3.7 拓展到矢量

  • 对于向量 θ = [ θ 1 θ 2 ⋯ θ p ] T \boldsymbol\theta=[\theta_1 \theta_2\cdots\theta_p]^T θ=[θ1θ2θp]T,则无偏估计器 θ ^ \hat{\boldsymbol\theta} θ^的下界为
    var ⁡ ( θ ^ i ) ≥ [ I − 1 ( θ ) ] i i \operatorname{var}\left(\hat{\theta}_{i}\right) \geq\left[\mathbf{I}^{-1}(\boldsymbol\theta)\right]_{i i} var(θ^i)[I1(θ)]ii
    θ \boldsymbol \theta θ中的第 i i i个参数的下界为信息矩阵的转置矩阵 [ i , i ] [i,i] [i,i]个元素。

    其中,费雪信息矩阵 I ( θ ) I(\boldsymbol\theta) I(θ)
    [ I ( θ ) ] i j = − E [ ∂ 2 ln ⁡ p ( x ; θ ) ∂ θ i ∂ θ j ] [\mathbf{I}(\boldsymbol{\theta})]_{i j}=-E\left[\frac{\partial^{2} \ln p(\boldsymbol{x} ; \boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right] [I(θ)]ij=E[θiθj2lnp(x;θ)]

  • 两点:

    1. 估计参数越多,CRLB越大。
    2. x [ n ] x[n] x[n]对不同参数的变化敏感度不同。
  • 定理

    正则条件——假设PDF p ( x ; θ ) p(\boldsymbol x;\boldsymbol \theta) p(x;θ)满足
    E [ ∂ ln ⁡ p ( x ; θ ) ∂ θ ] = 0 f o r   a l l   θ E\left[\frac{\partial \ln p(\boldsymbol x ; \boldsymbol\theta)}{\partial \boldsymbol\theta}\right]=0\quad for\ all\ \boldsymbol\theta E[θlnp(x;θ)]=0for all θ
    其中,期望是对 p ( x ; θ ) p(\boldsymbol x;\boldsymbol \theta) p(x;θ)求得。

    下界——任何无偏估计 θ ^ \hat{\boldsymbol \theta} θ^的协方差矩阵满足
    C θ ^ − I − 1 ( θ ) ⩾ 0 \mathbf{C}_{\hat{\theta}}-\mathrm{I}^{-1}(\boldsymbol{\theta}) \geqslant \mathbf{0} Cθ^I1(θ)0
    其中$\geqslant \mathbf{0} $解释为矩阵是半正定的。

    费雪信息矩阵 I ( θ ) \mathbf I(\boldsymbol\theta) I(θ)——
    [ I ( θ ) ] i j = − E [ ∂ 2 ln ⁡ p ( x ; θ ) ∂ θ i ∂ θ j ] [\mathbf{I}(\boldsymbol{\theta})]_{ij}=-E\left[\frac{\partial^{2} \ln p(\mathbf{x} ; \boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right] [I(θ)]ij=E[θiθj2lnp(x;θ)]
    其中,导数是在 θ \boldsymbol\theta θ的真值上计算的,数学期望是对 p ( x ; θ ) p(\mathbf x;\boldsymbol\theta) p(x;θ)求出的。

    MVUE——对于某个 p p p维函数 g \boldsymbol g g p × p p\times p p×p矩阵 I \boldsymbol I I,当且仅当
    ∂ ln ⁡ p ( x ; θ ) ∂ θ = I ( θ ) ( g ( x ) − θ ) \frac{\partial \ln p(\mathbf{x} ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=\mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x})-\boldsymbol{\theta}) θlnp(x;θ)=I(θ)(g(x)θ)
    可求到达下界的 C θ ^ = I − 1 ( θ ) \mathbf{C}_{\hat{\theta}}=\mathrm{I}^{-1}(\boldsymbol{\theta}) Cθ^=I1(θ)的无偏估计 θ ^ = g ( x ) \hat{\boldsymbol{\theta}}=\mathbf{g}(\mathbf{x}) θ^=g(x)

3.8 矢量参数的变换

  • 计算 α = g ( θ ) \boldsymbol \alpha=\mathbf g(\boldsymbol \theta) α=g(θ) g \mathbf g g是r-维函数
    C α ^ − ∂ g ( θ ) ∂ θ I − 1 ( θ ) ∂ g ( θ ) T ∂ θ ≥ 0 (3.30) \mathbf{C}_{\hat{\alpha}}-\frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})^{T}}{\partial \boldsymbol{\theta}} \geq \mathbf{0}\tag{3.30} Cα^θg(θ)I1(θ)θg(θ)T0(3.30)
    其中:

    1. ≥ 0 \geq \boldsymbol 0 0表示半正定

    2. ∂ g ( θ ) / ∂ θ \partial \mathrm{g}(\boldsymbol\theta) / \partial \boldsymbol \theta g(θ)/θ r × p r\times p r×p 雅各比矩阵

    ∂ g ( θ ) ∂ θ = [ ∂ g 1 ( θ ) ∂ θ 1 ∂ g 1 ( θ ) ∂ θ 2 … ∂ g 1 ( θ ) ∂ θ p ∂ g 2 ( θ ) ∂ θ 1 ∂ g 2 ( θ ) ∂ θ 2 ⋯ ∂ g 2 ( θ ) ∂ θ p ⋮ ⋮ ⋱ ⋮ ∂ g r ( θ ) ∂ θ 1 ∂ g r ( θ ) ∂ θ 2 ⋯ ∂ g r ( θ ) ∂ θ p ] \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=\left[\begin{array}{cccc} \frac{\partial g_{1}(\boldsymbol{\theta})}{\partial \theta_{1}} & \frac{\partial g_{1}(\boldsymbol{\theta})}{\partial \theta_{2}} & \ldots & \frac{\partial g_{1}(\boldsymbol{\theta})}{\partial \theta_{p}} \\ \frac{\partial g_{2}(\boldsymbol{\theta})}{\partial \theta_{1}} & \frac{\partial g_{2}(\boldsymbol{\theta})}{\partial \theta_{2}} & \cdots & \frac{\partial g_{2}(\boldsymbol{\theta})}{\partial \theta_{p}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{r}(\boldsymbol{\theta})}{\partial \theta_{1}} & \frac{\partial g_{r}(\boldsymbol{\theta})}{\partial \theta_{2}} & \cdots & \frac{\partial g_{r}(\boldsymbol{\theta})}{\partial \theta_{p}} \end{array}\right] θg(θ)=θ1g1(θ)θ1g2(θ)θ1gr(θ)θ2g1(θ)θ2g2(θ)θ2gr(θ)θpg1(θ)θpg2(θ)θpgr(θ)

3.9 一般高斯情况的CRLB

  • 多维高斯分布

  • 数据
    x ∼ N ( μ ( θ ) , C ( θ ) ) \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}(\boldsymbol{\theta}), \mathbf{C}(\boldsymbol{\theta})) xN(μ(θ),C(θ))
    均值和协方差都依赖参数 θ \boldsymbol \theta θ

    费雪信息矩阵
    [ I ( θ ) ] i j = [ ∂ μ ( θ ) ∂ θ i ] T C − 1 ( θ ) [ ∂ μ ( θ ) ∂ θ j ] + 1 2 tr ⁡ [ C − 1 ( θ ) ∂ C ( θ ) ∂ θ i C − 1 ( θ ) ∂ C ( θ ) ∂ θ j ] (3.31) [\mathbf{I}(\boldsymbol{\theta})]_{i j} =\left[\frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial \theta_{i}}\right]^{T} \mathbf{C}^{-1}(\boldsymbol{\theta})\left[\frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial \theta_{j}}\right] +\frac{1}{2} \operatorname{tr}\left[\mathbf{C}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{C}(\boldsymbol{\theta})}{\partial \theta_{i}} \mathbf{C}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{C}(\boldsymbol{\theta})}{\partial \theta_{j}}\right]\tag{3.31} [I(θ)]ij=[θiμ(θ)]TC1(θ)[θjμ(θ)]+21tr[C1(θ)θiC(θ)C1(θ)θjC(θ)](3.31)
    其中
    ∂ μ ( θ ) ∂ θ i = [ ∂ [ μ ( θ ) ] 1 ∂ θ i ∂ [ μ ( θ ) ] 2 ∂ θ i ⋮ ∂ [ μ ( θ ) ] N ∂ θ i ] ∂ C ( θ ) ∂ θ i = [ ∂ [ C ( θ ) ] 11 ∂ θ i ∂ [ C ( θ ) ] 12 ∂ θ i … ∂ [ C ( θ ) ] 1 N ∂ θ i ∂ [ C ( θ ) ] 21 ∂ θ i ∂ [ C ( θ ) ] 22 ∂ θ i ⋯ ∂ [ C ( θ ) ] 2 N ∂ θ i ⋮ ⋮ ⋱ ⋮ ∂ [ C ( θ ) ] N 1 ∂ θ i ∂ [ C ( θ ) ] N 2 ∂ θ i ⋯ ∂ [ C ( θ ) ] N N ∂ θ i ] \frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial \theta_{i}}=\left[\begin{array}{c} \frac{\partial[\boldsymbol{\mu}(\boldsymbol{\theta})]_{1}}{\partial \theta_{i}} \\ \frac{\partial[\boldsymbol{\mu}(\boldsymbol{\theta})]_{2}}{\partial \theta_{i}} \\ \vdots \\ \frac{\partial[\boldsymbol{\mu}(\boldsymbol{\theta})]_{N}}{\partial \theta_{i}} \end{array}\right] \qquad \frac{\partial \mathbf{C}(\boldsymbol{\theta})}{\partial {\theta_i}}=\left[\begin{array}{cccc} \frac{\partial[\mathbf C(\boldsymbol{\theta})]_{11}}{\partial \theta_{i}} & \frac{\partial[\mathbf C(\boldsymbol{\theta})]_{12}}{\partial \theta_{i}} & \ldots & \frac{\partial[\mathbf C(\boldsymbol{\theta})]_{1N}}{\partial \theta_{i}} \\ \frac{\partial[\mathbf C(\boldsymbol{\theta})]_{21}}{\partial \theta_{i}} & \frac{\partial[\mathbf C(\boldsymbol{\theta})]_{22}}{\partial \theta_{i}} & \cdots & \frac{\partial[\mathbf C(\boldsymbol{\theta})]_{2N}}{\partial \theta_{i}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial[\mathbf C(\boldsymbol{\theta})]_{N1}}{\partial \theta_{i}} & \frac{\partial[\mathbf C(\boldsymbol{\theta})]_{N2}}{\partial \theta_{i}} & \cdots & \frac{\partial[\mathbf C(\boldsymbol{\theta})]_{NN}}{\partial \theta_{i}} \end{array}\right] θiμ(θ)=θi[μ(θ)]1θi[μ(θ)]2θi[μ(θ)]NθiC(θ)=θi[C(θ)]11θi[C(θ)]21θi[C(θ)]N1θi[C(θ)]12θi[C(θ)]22θi[C(θ)]N2θi[C(θ)]1Nθi[C(θ)]2Nθi[C(θ)]NN
    对于参数 θ \theta θ是标量情况
    x ∼ N ( μ ( θ ) , C ( θ ) ) \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}(\theta), \mathbf{C}(\theta)) xN(μ(θ),C(θ))
    费雪信息则为
    [ I ( θ ) ] i j = [ ∂ μ ( θ ) ∂ θ ] T C − 1 ( θ ) [ ∂ μ ( θ ) ∂ θ ] + 1 2 tr ⁡ [ ( C − 1 ( θ ) ∂ C ( θ ) ∂ θ ) 2 ] (3.32) [\mathbf{I}(\theta)]_{i j} =\left[\frac{\partial \boldsymbol{\mu}(\theta)}{\partial \theta}\right]^{T} \mathbf{C}^{-1}(\theta)\left[\frac{\partial \boldsymbol{\mu}(\theta)}{\partial \theta}\right] +\frac{1}{2} \operatorname{tr}\left[\left(\mathbf{C}^{-1}(\theta) \frac{\partial \mathbf{C}(\theta)}{\partial \theta}\right)^2 \right]\tag{3.32} [I(θ)]ij=[θμ(θ)]TC1(θ)[θμ(θ)]+21tr[(C1(θ)θC(θ))2](3.32)


总结

[ref.]Kay S M. Fundamentals of statistical signal processing: estimation theory[M]. Prentice-Hall, Inc., 1993. [ch.1-ch.3]

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《统计信号处理估计理论基础 - 史蒂文·凯》是一本经典的统计信号处理教材,提供了关于估计理论的基础知识,适用于信号处理领域的学习者和从业者。该书主要包括以下几个方面的内容。 首先,该书介绍了估计理论的基本概念和数学工具。它强调了使用概率论和统计学方法进行信号估计的重要性。读者将学习到如何基于数据的统计特性进行信号参数的估计,以及如何评估估计的准确性和可靠性。此外,书中还详细介绍了贝叶斯信号检测和估计方法,提供了一种基于贝叶斯框架的信号处理方法。 其次,该书还涵盖了多种常见的估计问题和算法。它介绍了最小均方误差 (MSE) 估计,包括线性最小均方误差 (LMMSE) 估计和最大似然估计 (MLE)。此外,书中还介绍了最大后验估计 (MAP) 和贝叶斯估计方法,并详细讨论了非线性估计问题。 此外,该书还讨论了一些实际应用中的特殊估计问题。例如,它涵盖了信号检测与估计中的边缘化和条件化问题,以及参数估计中的偏差-方差权衡。这些问题在信号处理和统计学中都是非常重要的,并且在实际中经常遇到。 《统计信号处理估计理论基础 - 史蒂文·凯》是一本全面而详尽的教材,适用于初学者和有经验的研究人员。它不仅提供了理论基础,还包含了大量的实例和应用说明,帮助读者更好地理解和应用估计理论。无论是学习信号处理的学生,还是从事相关研究和工作的人员,该书都是一本值得推荐的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值