这是一道 中等难度 的题。
题目来自: leetcode
题目
给你一个字符串数组 tokens
,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为 ‘
+
’、‘-
’、‘*
’ 和 ‘/
’ 。 - 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是 向零截断 。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用 32 位 整数表示。
示例1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示:
1 <= tokens.length <= 104
tokens[i]
是一个算符("+"
、"-"
、"*"
或"/"
),或是在范围[-200, 200]
内的一个整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如
( 1 + 2 ) * ( 3 + 4 )
。 - 该算式的逆波兰表达式写法为
( ( 1 2 + ) ( 3 4 + ) * )
。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成
1 2 + 3 4 + *
也可以依据次序计算出正确结果。 - 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
题解
遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
以 ["2","1","+","3","*"]
为例:
Java 代码实现
class Solution {
private Deque<Integer> stack = new LinkedList<Integer>();
public int evalRPN(String[] tokens) {
for(String token : tokens){
if(token.equals("+") || token.equals("-") || token.equals("*") || token.equals("/")){
Integer num2 = stack.pop();
Integer num1 = stack.pop();
stack.push(this.calc(num1, num2, token));
}else{
stack.push(Integer.valueOf(token));
}
}
return stack.pop();
}
private int calc(int num1, int num2, String op){
if(op.equals("+")){
return num1 + num2;
}else if(op.equals("-")){
return num1 - num2;
}else if(op.equals("*")){
return num1 * num2;
}else if(op.equals("/")){
return num1 / num2;
}
return 0;
}
}
Go 代码实现
func evalRPN(tokens []string) int {
stack := []int{}
for _, token := range tokens {
if token == "+" || token == "-" || token == "*" || token == "/" {
num1, num2 := stack[len(stack)-2], stack[len(stack)-1]
stack = stack[:len(stack)-2]
stack = append(stack, calc(num1, num2, token))
}else{
val, _ := strconv.Atoi(token)
stack = append(stack, val)
}
}
return stack[0]
}
func calc(num1 int, num2 int, op string ) int {
if op == "+" {
return num1 + num2
}else if op == "-" {
return num1 - num2
}else if op == "*" {
return num1 * num2
}else if op == "/" {
return num1 / num2
}
return 0
}
复杂度分析
时间复杂度: O ( N ) O(N) O(N), N为给定字符串数组长度。
空间复杂度: O ( N ) O(N) O(N), N为给定字符串数组长度。
- 最理想的情况是每隔两个数字就有一个运算符,这样栈中最多存2个数字就够了,空间复杂度为。
- 最坏情况下,给定数组前面都是数字,后面都是运算符,空间复杂度为,也就是。