Hadoop 序列化

作者为新手小白,只为记录学习&交流
如任何读者有任何正面建议,欢迎留言&私信,不胜感激
内容原创 侵删致歉
2020年3月29日12:10:40

本文记录Hadoop学习过程中对序列化的理解

Hadoop序列化

什么是序列化
序列化就是把内存中的对象,转换成字节序列( 或其他数据传输协议)以便于存储到磁盘(持久化) 和网络传输。反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。
为什么要序列化
一般来说,“活的” 对象只生存在内存里,关机断电就没有了。而且“活的‘对象只能由本地的进程使用,不能被发送到网络。上的另外一台计算机。然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。
Hadoop序列化
Java的序列化是一个重量级序列化框架(Serializable) ,一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header, 继承体系等),在序列化过程中会将1KB ——> 4KB,体积和传输时所占带宽都是原来的四倍,不便于在网络中高效传输。
所以,Hadoop自己开发了一套序列化机制(Writable)对传统的Java序列化进行了优化
实现Hadoop的序列化首先要定义一个FlowBean类来实现Hadoop的Writeable接口:implements Writable
接口中共有两个方法:write和readFields

/**
 * 序列化方法
 * @param dataOutput 框架给我们提供的数据窗口
 * @throws IOException
 */
@Override
public void write(DataOutput dataOutput) throws IOException {
    dataOutput.writeLong(upFlow);
    dataOutput.writeLong(downFlow);
    dataOutput.writeLong(sumFlow);
}

// 序列化和反序列化的数据顺序(upFlow,downFlow,sumFlow)和数据类型(writeLong() readLong())要完全一致

/**
 * 反序列化方法
 * @param dataInput 框架提供的数据来源
 * @throws IOException
 */
@Override
public void readFields(DataInput dataInput) throws IOException {
    upFlow=dataInput.readLong();
    downFlow=dataInput.readLong();
    sumFlow=dataInput.readLong();

Hadoop序列化特点:
(1)紧凑:高效使用存储空间。
(2)快速:读写数据的额外开销小。
(3)可扩展:随着通信协议的升级而可升级
(4)互操作:支持多语言的交互
总结:
Hadoop基础序列化类型
在这里插入图片描述

开发环境

OS: Win10
IDE: Intelij IDEA 2019.3.3
Hadoop版本: Hadoop-3.1.2

任务描述

学前需知: 本任务依赖于mapreduce框架,可参考本人的实例
目标: 统计phone_data中每一个手机号耗费的总上行流量、下行流量、总流量
phone_data:在这里插入图片描述

开始

新建四个类对象

在这里插入图片描述
explain不用管,是我瞎写的一点记录
其中
FloeBean是包装类用来储存最后记录出的输出结果

FlowBean类

package com.hadoop.Flow;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class FlowBean implements Writable {
    private long upFlow;
    private long downFlow;
    private long sumFlow;

    @Override
    public String toString() {
        return upFlow+"\t"+downFlow+"\t"+sumFlow;
    }

    public FlowBean() {
    }

    public void set(long upFlow,long downFlow){
        this.upFlow=upFlow;
        this.downFlow=downFlow;
        this.sumFlow=upFlow+downFlow;
    }
    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }


    /**
     * 序列化方法
     * @param dataOutput 框架给我们提供的数据窗口
     * @throws IOException
     */
    @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(sumFlow);
    }

//    序列化和反序列化的数据顺序(upFlow,downFlow,sumFlow)和数据类型(writeLong() readLong())要完全一致

    /**
     * 反序列化方法
     * @param dataInput 框架提供的数据来源
     * @throws IOException
     */
    @Override
    public void readFields(DataInput dataInput) throws IOException {
        upFlow=dataInput.readLong();
        downFlow=dataInput.readLong();
        sumFlow=dataInput.readLong();
    }
}

FlowMapper类

package com.hadoop.Flow;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class FlowMapper extends Mapper<LongWritable, Text,Text,FlowBean> {
    private Text phone = new Text();
    private FlowBean flow = new FlowBean();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] fields = value.toString().split("\t");
        phone.set(fields[1]);
        long upFlow=Long.parseLong(fields[fields.length-3]);
        long downFlow=Long.parseLong(fields[fields.length-2]);
        flow.set(upFlow,downFlow);
        context.write(phone,flow);


    }
}

FlowReducer类

package com.hadoop.Flow;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class FlowReducer extends Reducer<Text,FlowBean,Text,FlowBean> {

    private FlowBean sumFlow=new FlowBean();


    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {

        long sumUpFlow=0;
        long sumDownFlow=0;
        for (FlowBean value : values) {
            sumUpFlow+=value.getUpFlow();
            sumDownFlow+=value.getDownFlow();
        }
        sumFlow.set(sumUpFlow,sumDownFlow);
        context.write(key,sumFlow);
    }
}

FlowDriver类

package com.hadoop.Flow;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        //1.获取job实例
        Job job = Job.getInstance(new Configuration());
        //2.设置类路径
        job.setJarByClass(FlowDriver.class);
        //3.设置mapper和reducer类路径
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);
        //设置输入输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        job.setMapOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);
        //5.设置path
        FileInputFormat.setInputPaths(job, new Path("E:\\athadoop\\FlowBean\\input"));
        FileOutputFormat.setOutputPath(job, new Path("E:\\athadoop\\FlowBean\\output"));

        //6.提交
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}

输出结果

在这里插入图片描述
22数据变21行了??
就有一个重复的电话号???
好尴尬的数据。。
读者可以讲数据复制几份看看结果

后记

至此为本人对Hadoop序列化理解全部内容,欢迎大家在留言处给予建议或指出不足,感谢!

内容原创 侵删致歉
欢迎访问作者主页查看更多相关文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值