Trecvid2014随感 1. 竞赛的Workshop还是很有意思,相比暑假参加的ICME这种盛会,小会议的内容会比较集中,大家都是做这个数据集的,不像盛会,一个session里面论文的话题变化太大。另外看到同领域大佬的机会也更大了,能有机会和他们说上一两句话也挺有意思的。同理,大家都觉得ICMR是很著名的会议,称是ACM打造的除MM外Multimedia的第二顶会。
SIFT vs Dense-SIFT 有个博友问SIFT和Dense-SIFT在应用上的区别。这个问题可以放大到Sparse feature和Dense feature的使用场景上。之前自己也考虑过这个问题,今天不妨写出来。
Managing Your Advisor -- Creativity and grad school survival advice from Professor Nick Feamster With the new academic term almost upon us, several of my students started to put together a list of practical advice for incoming students—including various niceties such as how to gain access to the
一般物体检测--Binarized Normed Gradients for Objectness Estimation at 300fps 前一段时间很多人在网上传程明明在CVPR14年上即将发表的Objectness文章,Project Page在这里,和这里。最近,正好想用一般物体检测做点事情,上周也在实验室做了一个这个方面的报告,今天打算在博客上总结一下。
机器学习是什么 不久以前读的一篇好文,主要是讲机器学习到底是属于什么学科或者研究领域,同时也介绍到了ML与AI之间的关系。作者是南京大学的周志华老师。废话少说,直接上文章。------------------------------------------------------- 机器学习现在是一大热门,研究的人特多,越来越多的新人涌进来。 不少人其实并没
BOW模型在ANN框架下的解释 Bag of words模型在图像分类和检索的相关问题中,能够将一系列数目不定的局部特征聚合为一个固定长度的特征矢量,从而使不同图像之间能够进行直接比较。然而,BOW往往作为一种编码方式被解释着(SIFT作为coding,BOW作为average pooling),在这里,我会从一个近似最近邻(approximate nearest neighbor)的角度解释一下BOW。
图˙谱˙马尔可夫过程˙聚类结构----by林达华 这又是林达华的一篇好文,将四个概念在某个方面解释的很清楚,特别是特征值和特征向量的意义,让人豁然开朗。 原文已经找不到了,好像是因为林达华原来的live博客已经失效,能找到的只有网上转载的文章(本来还想把他的博客看个遍)。林本人的数学功底之强,有时候会让我们这些搞CV、ML的人趁还在学校,重头把一些数学学一遍。不过想想学校所开设的课程实在是屎(老师和学生们都是混),也就想想罢了
如何评价吴军《浪潮之巅》?来自反面的声音 原文来自 http://shibeichen.com/post/20010616910还有来自知乎的各种声音:http://www.zhihu.com/question/20612417至少在我阅读这本书的时候,将书中大部分陈述当做事实来看待,对于作者在文中阐释的一些态度,确实很多不能认同(有的时候会认为自己才疏浅薄,不能正确理解,现在看到一些同样观点后发现大可不必这样)。另一方面,抛
计算机视觉、机器学习相关领域论文和源代码大集合 原文转自:http://blog.csdn.net/zouxy09/article/details/8550952原作者是zouxy09,之前已经转载了他的好几篇文章了,比如LBP、HOG。这次转载是在寻找unsupervised image segmentation的方法及源代码的时候搜寻到了这里,找到了Efficient Graph-based Image Segmentation 的
matlab的double和single类型 看到博客(这里)中说,在matlab中, 当数据比较大时,运算起来就困难了,有时候还会out of memory。原因是默认情况下matlab用double存储数据。而double数据类型占8个字节,single类型占4个字节。把数据类型从double类型转换成single类型可以节省一半的空间。(如果怀疑可以用whos指令查看)。本来很有道理的,但是看到有人说(比如这里):The forma
Computer Vision的尴尬---by林达华 Computer Vision是AI的一个非常活跃的领域,每年大会小会不断,发表的文章数以千计(单是CVPR每年就录取300多,各种二流会议每年的文章更可谓不计其数),新模型新算法新应用层出不穷。可是,浮华背后,根基何在?对于Vision,虽无大成,但涉猎数年,也有管窥之见。Vision所探索的是一个非常复杂的世界,对于这样的世界如何建模,如何分析,却一直没有受普遍承认的理论体系。大部分的
内核线程、轻量级进程、用户线程 转载:http://www.cnitblog.com/tarius.wu/articles/2277.html转载:http://www.fansoo.com/blog/2011/kernel-threads-lightweight-processes-threads-and-linuxthreads-library-users/内核线程内核线程只运行在内核态,不受用户态上下文的拖
理解sparse coding 本文的内容主要来自余凯老师在CVPR2012上给的Tutorial。前面在总结ScSPM和LLC的时候,引用了很多Tutorial上的图片。其实这个Tutorial感觉写的挺好的,所以这次把它大致用自己的语言描述一下。不过稀疏编码是前两年比较火的东西,现在火的是deep learning了。1、What is sparse coding? 稀疏编码的提出,最早是用于解释人脑的视
图像的稀疏表示——ScSPM和LLC的总结 上一篇提到了SPM。这篇博客打算把ScSPM和LLC一起总结了。ScSPM和LLC其实都是对SPM的改进。这些技术,都是对特征的描述。它们既没有创造出新的特征(都是提取SIFT,HOG, RGB-histogram et al),也没有用新的分类器(也都用SVM用于最后的image classification),重点都在于如何由SIFT、HOG形成图像的特征(见图1)。从BOW,到BOW+SPM