假设在n进制下,下面的等式成立,567*456 = 150216,n的值为:
A . 9 B. 10 C . 12 D. 18
答案是D 18进制。
解:
注:n^2表示为n的平方。
首先先看等式左边中第一项 的个位数上的值 * 第二项的个位数上的值 =
(1)把两边都成n进制权重相加的形式,即等式可变为:
(5*n^2+6*n^1+7*n^0) * (4*n^2+5*n^1+6*n^0) = 1*n^5+5*n^4+0*n^3+2*n^2+1*n^1+6*n^0;
(2)整理得:
20*n^4 + 49*n^3 + 88*n^2 + 71*n + 42 = n^5 + 5*n^4 + 2*n^2 + n + 6
(3)两边同时对n求余,即 %n得到
42 % n = 6 % n (1)
(4)再把(1)中的式子 整除 n(/n),然后求余,再令其 =1得
(71 + 42/n ) % n = (1 + 6/n) % n =1 (2)
(5)联立(1)(2)两式,求 n = 18;
其他类型的题也可以怎么按这个步骤写。