假设在n进制下,下面的等式成立,567*456=150216,n的值是?

假设在n进制下,下面的等式成立,567*456 = 150216,n的值为:

A . 9    B.    10    C .    12   D.      18

答案是D 18进制。

解:

注:n^2表示为n的平方。

首先先看等式左边中第一项 的个位数上的值 * 第二项的个位数上的值 = 

(1)把两边都成n进制权重相加的形式,即等式可变为: 

(5*n^2+6*n^1+7*n^0) * (4*n^2+5*n^1+6*n^0) = 1*n^5+5*n^4+0*n^3+2*n^2+1*n^1+6*n^0;

(2)整理得:

20*n^4 + 49*n^3 + 88*n^2 + 71*n + 42 = n^5 + 5*n^4 + 2*n^2 + n + 6

(3)两边同时对n求余,即 %n得到

42 % n = 6 % n                                                                 (1)

(4)再把(1)中的式子 整除 n(/n),然后求余,再令其 =1得

(71 + 42/n ) % n = (1 + 6/n) % n  =1                          (2)

(5)联立(1)(2)两式,求 n = 18;

 

其他类型的题也可以怎么按这个步骤写。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值