深度学习
文章平均质量分 84
为为-180-3121-1455
分享科研必备内容,找我请联系工众号【科研技术平台】
展开
-
全流程Python编程、机器学习与深度学习实践技术应用
帮助学员理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统学习包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、生成对抗网络(GAN)、YOLO目标检测算法、自编码器等前沿技术的原理及其PyTorch编程实现。6、值得研究的若干问题(隐含层神经元个数、学习率、初始权值和阈值等如何设置?第三方模块的安装与使用;4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)原创 2024-10-22 16:06:48 · 642 阅读 · 0 评论 -
R语言机器学习遥感数据处理与模型空间预测技术及实际项目案例分析
在训练过程中,使用Bootstrap抽样生成不同的训练集,并在节点分裂时随机选择特征子集,这使得模型具备了处理高维和非线性数据的能力。因此,遥感随机森林建模与空间预测的应用能够有效提升遥感数据分析的精度和可靠性,是许多研究者关注的热点。随机森林(RF)、极限梯度提升机(XGBoost)和支持向量机(SVM)等机器学习算法,分别建立预测模型,并参数调优。(2)R语言基础语法与数据结构,包括:程序包安装、加载、更新,数据读取与输出,ggplot2常规画图等。(2)整合、分析机器学习在遥感、生态领域的经典论文。原创 2024-10-06 07:15:00 · 312 阅读 · 0 评论 -
GPT办公与科研应用、论文撰写、数据分析、机器学习、深度学习及AI绘图
ChatGPT科研必备GPT汇总介绍(寻找好用的GPTs模型、提示词优化、生成思维导图、生成PPT、生成视频、制定个性化的学习计划、检索论文、总结论文内容、总结视频内容、撰写论文、论文翻译、论文润色与修改、参考文献格式管理、论文评审、数据分析、生成代码、代码调试等)1、课题申请书撰写技巧及要点剖析(项目名称、关键词、摘要、立项依据、参考文献、研究目标、研究内容、研究方案、关键科学问题、可行性分析、创新点与特色之处、预期研究成果、工作基础等)折线图、柱状图、饼图、地图等各种图形的绘制)Python程序注释)原创 2024-09-23 17:30:41 · 2184 阅读 · 0 评论 -
全流程Python编程、机器学习与深度学习实践技术应用
帮助学员理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统学习包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、生成对抗网络(GAN)、YOLO目标检测算法、自编码器等前沿技术的原理及其PyTorch编程实现。6、值得研究的若干问题(隐含层神经元个数、学习率、初始权值和阈值等如何设置?4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)原创 2024-08-27 10:43:21 · 838 阅读 · 0 评论 -
深度学习全景进阶:最新Python深度学习进阶与前沿应用
(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化、ViT模型的Python代码实现)提出的背景、基本架构、与ViT模型的比较、分层架构、窗口机制、位置编码、Transformer编码器、模型的训练与优化、模型的Python代码实现)原创 2024-08-27 10:33:04 · 854 阅读 · 0 评论