在二叉排序树中删除结点共有三种情况:删除结点为叶子结点、删除结点有一颗子树、删除结点有两颗子树。
删除叶子结点操作:找到删除结点的父结点,判断叶子结点为左子结点还是右子结点,parent.left = null或者parent.right = null;
删除结点有一颗子树操作:判断要删除结点为父结点的左子结点还是右子结点,并判断删除结点有左子树还是右子树,parent.left = node.left;
删除结点有两颗子树操作:寻找删除结点左子树的最大值结点或者右子树的最小值结点,删除该结点,并且将该结点的值赋给删除结点
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
BinarySortTree bst = new BinarySortTree();
int[] arr = {14, 55, 2, 45, 87, 100, 40, 13};
for (int i = 0; i < arr.length; i++) {
bst.add(new Node(arr[i]));
}
System.out.println("中序遍历的结果为:");
bst.infixOrder();
// 删除结点有两颗子树
bst.delNode(55);
// 删除结点有一颗子树
bst.delNode(2);
// 删除结点为叶子结点
bst.delNode(40);
System.out.println("删除结点后,中序遍历结果为:");
bst.infixOrder();
}
}
//二叉排序树类
class BinarySortTree {
private Node root;
//查找要删除的结点
public Node searchNode(int value) {
if (root == null) {
return null;
} else {
return root.searchNode(value);
}
}
//查找要删除结点的父结点
public Node searchParent(int value) {
if (root == null) {
return null;
} else {
return root.searchParent(value);
}
}
// 查找删除结点右子树的最小值
public int delRightMin(Node node) {
Node minNode = node;
while (minNode.left != null) {
// 循环查找左子结点,最左结点为最小值
minNode = minNode.left;
}
// 删除最小结点
delNode(minNode.value);
return minNode.value;
}
//删除结点
public void delNode(int value) {
if (root == null) {
return;
} else {
Node node = searchNode(value);
Node parent = searchParent(value);
//如果找不到要删除的结点,退出方法
if (node == null) {
return;
}
//只有一个结点,该结点为根结点,则该结点一定会被删除
if (root.left == null && root.right == null) {
root = null;
return;
}
//如果要删除的结点为叶子结点
if (node.left == null && node.right == null) {
//判断叶子结点为左子结点还是右子结点
if (parent.left != null && parent.left.value == value) {
parent.left = null;
return;
} else if (parent.right != null && parent.right.value == value) {
parent.right = null;
return;
}
} else if (node.left != null && node.right != null) {
// 要删除的结点有两颗子树
// 找到要删除结点右子树的最小结点
node.value = delRightMin(node.right);
} else {
// 要删除的结点有一颗子树
if (root.value == value) {
// 当删除结点为根结点
if (root.left != null) {
root = root.left;
} else {
root = root.right;
}
} else if (parent.left == node) {
// 删除结点为左子结点
if (node.left != null) {
// 删除的结点有左子树
parent.left = node.left;
} else {
// 删除的结点有右子树
parent.left = node.right;
}
} else {
// 删除的结点为右子结点
if (node.left != null) {
parent.right = node.left;
} else {
parent.right = node.right;
}
}
}
}
}
// 添加结点
public void add(Node node) {
if (root == null) {
root = node;
} else {
root.add(node);
}
}
// 中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}
}
//结点类
class Node {
public int value;
public Node left;
public Node right;
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
//查找结点,返回值为该结点,如果找不到,返回null
public Node searchNode(int value) {
if (value == this.value) {
return this;
} else if (value < this.value) {
if (this.left == null) {
return null;
}
return this.left.searchNode(value);
} else {
if (this.right == null) {
return null;
}
return this.right.searchNode(value);
}
}
//查找要删除结点的父结点
public Node searchParent(int value) {
if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
return this;
} else {
if (this.left != null && value < this.value) {
return this.left.searchParent(value);
} else if (this.right != null && value >= this.value) {
return this.right.searchParent(value);
} else {
return null;
}
}
}
// 添加结点
public void add(Node node) {
if (node == null) {
return;
}
if (node.value < this.value) {
// 如果左子结点为空,则直接放在左子结点的位置上
if (this.left == null) {
this.left = node;
} else {
// 左子结点不为空时,进行递归
this.left.add(node);
}
} else {
if (this.right == null) {
this.right = node;
} else {
this.right.add(node);
}
}
}
// 中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
}
中序遍历的结果为:
Node{value=2}
Node{value=13}
Node{value=14}
Node{value=40}
Node{value=45}
Node{value=55}
Node{value=87}
Node{value=100}
删除结点后,中序遍历结果为:
Node{value=13}
Node{value=14}
Node{value=45}
Node{value=87}
Node{value=100}