素数环问题

#include<iostream>
using namespace std;
int a[21],b[21];//定义两个数组,b放数,a来判断用没用;
int test(int x);
void outs();
int prime(int x);//判素数;
int main()//主程序,不解释;
{
    int m,i;
    m=1;
    for(i=1;i<=20;i++)
    {
        a[i]=1;
    }
    test(m);
    return 0;
}
int test(int x)//一个递归思想,不断判断下一个数;
{
    int i;
    if(x>20&&prime(b[20]+b[1])==1)//当填完时,输出,注意,是个环,最后一个与第一个也要连起来;
    {
        outs();
    }
    else
    {
        for(i=1;i<=20;i++)
        {
            if((a[i]==1)&&prime(i+b[x-1])==1)
            {
                b[x]=i;
                a[i]=0;
                test(x+1);
                if(b[20]!=0&&prime(b[20]+b[1])==1)
                {
                    return 0;
                }
                else
                {
                    a[i]=1;
                    b[x]=0;
                }
            }
        }
    }
}
int prime(int x)
{
    int i;
    if(x==1)
    {
        return 1;
    }
    else
    {
        for(i=2;i*i<=x;i++)
        {
            if(x%i==0)
            {
                return 0;
            }
        }
        return 1;
    }    
}
void outs()//输出函数;
{
    int i;
    for(i=1;i<=20;i++)
    {
        if(i==1)
        {

            cout<<b[1];//第一个单独输出;

        }
        else
        {
            cout<<' '<<b[i];//其他的都要加空格;
        }
    }
    cout<<endl;

}

很多小伙伴这道题都卡在了环上,其实这道题没有提示清楚,虽然在题目上,希望你们看完后尽快解决这道题。

素数问题是一种经典的组合数学问题,其描述如下: 给定一个正整数 n,找到长度为 n 的形排列,使得相邻两个数之和均为素数。同一个数字不能被重复使用。 解决素数问题的一种常见方法是使用回溯法。具体地,我们可以定义一个长度为 n 的数组 arr,表示当前已经排列好的数字序列。我们从数字 1 开始,依次尝试将它放到 arr[0] 的位置,然后递归搜索下一个数字。如果当前数字无法满足相邻两个数之和为素数的条件,我们就回溯到上一个数字,继续尝试下一个可行的位置。 为了判断两个数字之和是否为素数,我们可以使用一个预处理表格,将所有可能的素数先计算出来,然后在回溯过程中直接查表即可。 下面是一个简单的 Python 代码实现: ```python def is_prime(n): if n < 2: return False for i in range(2, int(n ** 0.5) + 1): if n % i == 0: return False return True def solve_prime_ring(n): arr = [0] * n primes = [i for i in range(2, 2 * n) if is_prime(i)] def backtrack(k): if k == n: if is_prime(arr[0] + arr[n-1]): print(arr) return for i in range(1, n): if i not in arr and is_prime(i + arr[k-1]): arr[k] = i backtrack(k+1) arr[k] = 0 arr[0] = 1 backtrack(1) solve_prime_ring(5) ``` 这里的 is_prime 函数用来判断一个数是否为素数,primes 则是一个预处理的素数表格。在回溯函数 backtrack 中,我们依次尝试将数字 1 到 n-1 放到 arr[k] 的位置,只有当该数字还未被使用且与前一个数字之和为素数时,才递归搜索下一个数字。当搜索到第 n 个数字时,如果第一个数字与最后一个数字之和为素数,则打印出当前符合要求的排列,否则回溯到上一个数字继续尝试。最终,程序会输出所有符合条件的素数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值