1139: 选数
时间限制: 1 Sec 内存限制: 128 MB提交: 5 解决: 4
[ 提交][ 状态][ 讨论版]
题目描述
已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n)。从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:
3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34。
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:3+7+19=29)。
输入
键盘输入,格式为:
n , k (1<=n<=20,k<n)
x1,x2,…,xn (1<=xi<=5000000)
输出
屏幕输出,格式为:
一个整数(满足条件的种数)。
样例输入
4 3
3 7 12 19
样例输出
1
提示
来源
如果直接暴力的话组合有n!个。。然后就想到了dfs。其实我可能一直没想明白dfs到底优化在哪,不是也算是暴力求出所有可能情况么。。然后通过这题想明白了一些。。dfs是比纯暴力要减去了很多种情况的,就比如说这题: 暴力需要判断 3 7 12,并且7 3 12、12 3 7、12 7 3等都会遍历一遍,而搜索的话就只会按顺序只遍历第一个,并且对于k这个组成的个数是不确定的,所以你不需要些k个for?搜索还是很叼的东西。。
code:
#include<stdio.h>
int n, k, res, a[25];
bool is_prime(int sum)
{
for(int i=2; i*i<=sum; i++)
if(sum%i == 0) return 0;
return 1;
}
void dfs(int sum, int num, int x) //求和,组成个数,要加第几个数
{
if(num == k)
{
if(is_prime(sum)) res++;
return ;
}
for(int i=x; i<n; i++)
{
if(num+1 <= k) dfs(sum+a[i],num+1,i+1); //只能往后搜
}
}
int main()
{
scanf("%d%d", &n,&k);
for(int i=0; i<n; i++)
{
scanf("%d", a+i);
}
dfs(0,0,0);
printf("%d\n", res);
return 0;
}