最强AI换脸软件Facefusion又又又更新啦,支持直播实时换脸!

号称“下一代换脸和数字人生成神器”的Facefusion软件在2024年4月13日发布了最新的2.5.0版本,带来了一系列的更新和改进,使得人脸融合和分析技术更加易用和高效。

图片

Facefusion2.5.0版本介绍

  1. 新增直播模式,新增照片/视频上色功能,优化口型同步

  2. 框架着色器的引入:集成了ddcolor和deoldify模型,引入了帧着色器功能,能够为黑白视频帧添加颜色,使其看起来更加生动。

  3. 口型同步质量提升:通过从音频中提取语音特征,优化了口型同步器的准确性,使得视频中的口型与声音同步更加自然。

  4. 人脸特征点估计:进行了实验性的功能拓展,支持5到68个人脸特征点的估计,增强了面部追踪的精度。

  5. 面部增强器模型:添加了新的面部增强器模型gpen_bfr_1024和gpen_bfr_2048,用以提高面部图像的清晰度和质量。

  6. 帧增强器模型:引入了real_esrgan_x2和real_hatgan_x4模型,用于提升视频帧的分辨率和质感。

图片

离线懒人包来了

老规矩,大家自行在本地部署比较麻烦,已经为大家制作好了一款离线整合包了,下载到本地解压即用。

图片

大家下载解压到本地。

①双击“一键启动-换脸.exe”。

②双击一键启动程序后,会打开一个命令提示窗口,项目会自动运行。加载成功后,请自行复制以下网址在浏览器打开“ http://127.0.0.1:7860/”,记得点点关注不迷路哦,后续还有更多酷炫的AI项目分享~

图片

③打开页面后,可以看到项目主界面。

图片

图片/视频换脸使用教程:

  1. 设置人脸(Source):点击这个区域,打开文件管理器,选择一张带清晰完整人脸图片就可以了(注意图片名字用英文或数字)。

  2. 设置目标(Target):点击这个区域,选择待换脸的目标图片,或者视频。

  3. 效果预览 (Preview):完成上述两步后,软件会自动开始运行,之后会把换脸预览显示在这个区域。如果目标是图片,预览区域就是换脸后的结果了。如果目标是视频的话,会截取第一帧作为预览效果。

  4. 开始换脸(Start):一切就绪之后,就可以点击start按钮开始正式换脸了。

  5. 查看结果(OUTPUT):换脸成功之后,最终结果显示在output这里,点击右上角的下载图标,就可以把结果保存到本地。

图片

数字人使用教程:

  1. 帧处理器:选择lip_syncer

  2. :上传待生成数字人图片

  3. 目标:上传待生成数字人音频

  4. 开始生成:一切就绪之后,就可以点击start按钮开始正式换脸了。

  5. 查看结果(OUTPUT)

实时换脸直播使用教程:

双击“一键启动-直播.exe”,可以使用实时换脸进行直播(前提是本地有摄像头)。

图片

注意事项:

①该项目建议使用英伟达显卡运行,CPU也能跑但比较慢,可以在界面中选择使用CPU还是GPU跑。

②软件路径、图片和视频文件的名称和路径都不能包含中文,不然可能会出错。另外,计算机系统的用户名也不要设置成中文,不然也可能会出现问题。

③系统要求:支持Windows 10和Windows 11

今天就聊到这了,我是Glen,感谢你看我的文章,欢迎大家继续支持我,请点赞、收藏、分享三连走一波吧~

关注公众号Glen,回复【Facefusion2.5.0】,免费获得本文资源~

### 使用Hugging Face实现快速技术 #### 访问FacePoke工具 为了开始使用FacePoke工具进行头部位置调整或操作,需先访问该工具所在的页面。这可以通过前往[Hugging Face](https://huggingface.co/)并搜索`FacePoke`找到对应的模型或应用来完成[^1]。 #### 准备工作环境 确保本地开发环境中已安装必要的Python库,比如transformers和torch等依赖项。如果遇到连接错误如`OSError: We couldn't connect to 'https://huggingface.co'`,则可能是网络配置问题或是API服务暂时不可用所致[^4]。此时应检查互联网连接状态以及确认防火墙设置不会阻止对目标网站的请求;另外也可以尝试更不同的网络环境再试一次。 #### 图像预处理与上传 当成功加载了FacePoke应用程序之后,下一步就是准备要编辑的照片。按照指示上传待处理图像文件,并利用界面内提供的画笔工具圈定需要修改的人部分。建议扩大选取范围以便获得更自然的结果[^2]。 #### 应用人识别增强功能 考虑到新推出的IP-Adapter中的FaceID模块能够显著提高面部特征匹配精度,在执行具体任务前不妨考虑集成此特性到项目当中去。通过引入基于身份嵌入的身份验证机制,可以使生成的内容更加贴近源对象的真实面貌特点[^3]。 ```python from transformers import pipeline, AutoModelForImageGeneration, AutoFeatureExtractor # 加载预训练模型及处理器 model_name = "path/to/your/model" feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) model = AutoModelForImageGeneration.from_pretrained(model_name) # 创建pipeline实例用于简化调用过程 swap_pipeline = pipeline("image-to-image", model=model, feature_extractor=feature_extractor) # 执行操作 output_image = swap_pipeline(source_image_path="source.jpg", target_face_id="target_face_embedding") output_image.save("result.png") ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值