平均数(均值)是一个统计学的概念;期望是一个概率论的概念。
平均数是 实验后 根据实际结果统计得到的样本的平均值;期望是 实验前 根据概率分布“预测”的样本平均值。
之所以说是预测是因为 在实验前能得到的期望与实际实验得到的样本的平均数总会不可避免的存在偏差,毕竟随机实验的结果永远充满着不确定性。
如果我们能进行无穷次随机实验并计算出其样本的平均数的话,那么这个平均数其实就是期望。但是实验样本的平均数会随着实验样本的增多越来越接近期望,就像频率随着实验样本的增多会越来越接近概率一样。
如果说概率是频率随样本趋于无穷的极限
那么期望就是平均数随样本趋于无穷的极限