描述
很少有人知道奶牛爱吃苹果。农夫约翰的农场上有两棵苹果树(编号为1和2), 每一棵树上都长满了苹果。奶牛贝茜无法摘下树上的苹果,所以她只能等待苹果 从树上落下。但是,由于苹果掉到地上会摔烂,贝茜必须在半空中接住苹果(没有人爱吃摔烂的苹果)。贝茜吃东西很快,她接到苹果后仅用几秒钟就能吃完。每一分钟,两棵苹果树其中的一棵会掉落一个苹果。贝茜已经过了足够的训练, 只要站在树下就一定能接住这棵树上掉落的苹果。同时,贝茜能够在两棵树之间 快速移动(移动时间远少于1分钟),因此当苹果掉落时,她必定站在两棵树其中的一棵下面。此外,奶牛不愿意不停地往返于两棵树之间,因此会错过一些苹果。苹果每分钟掉落一个,共T(1<=T<=1000)分钟,贝茜最多愿意移动W(1<=W<=30) 次。现给出每分钟掉落苹果的树的编号,要求判定贝茜能够接住的最多苹果数。 开始时贝茜在1号树下。
输入
第一行2个数,t和k。接下来的t行,每行一个数,代表在时刻t苹果是从1号苹果树还是从2号苹果树上掉下来的。
输出
对于每个测试点,输出一行,一个数,为奶牛最多接到的苹果的数量。
样例输入
7 2
2
1
1
2
2
1
1
样例输出
6
提示
输出注解:贝茜不移动直到接到从第1棵树上掉落的两个苹果,然后移动到第2棵树下,直到接到从第2棵树上掉落的两个苹果,最后移动到第1棵树下,接住最后两个从第1 棵树上掉落的苹果。这样贝茜共接住6个苹果。
动态规划问题,f(i,j)为第i分钟移动j次吃到的苹果数,f(i,j)=max(f(i-1,j-1),f(i-1.j-1))。可以建立一个T*W的矩阵,根据状态转移方程为矩阵赋值,遍历最后一行就可得到最大值(即矩阵第t行)
#include <iostream>
using namespace std;
#define MAX(a,b)a>b?a:b
/*int MAX(int a,int b)
{
return a>b?a:b;
}*/
int _tmain(int argc, _TCHAR* argv[])
{
int s[1001][31];
int max=0,k,t,i,j,x,y;
int a[1001];
cin>>t>>k;
for(i=1;i<=t;++i)
cin>>a[i];
for(i=0;i<=k;++i)
s[0][i]=0;//时间t=0时吃到的苹果数必为0
for(i=1;i<=t;++i)
{
s[i][0]=s[i-1][0]+a[i]%2;//移动次数为0时
for(j=1;j<=k;++j)
{
x=(j%2==(a[i]-1)?1:0);//计算这一次能否吃到苹果
y=MAX(s[i-1][j-1],s[i-1][j]);
s[i][j]=x+y;
}
}
for(i=0;i<=k;++i)
if(s[t][i]>max) max=s[t][i];
cout<<max;
return 0;
}