新方法与就三样?!

  1. 简单的卷积神经网络(CNN):

    • 输入层:接收输入的图像数据。
    • 卷积层1:32个滤波器,3x3的卷积核,步长1,填充1。
    • ReLU激活函数:应用于卷积层的输出。
    • 卷积层2:64个滤波器,3x3的卷积核,步长1,填充1。
    • ReLU激活函数
    • 全连接层1:将卷积层的输出展平后连接到128个神经元。
    • ReLU激活函数
    • 全连接层2:128到10的映射,输出层对应10个数字类别。

  1. 简单的递归神经网络(RNN):

    • 输入层:接收序列化的图像数据。
    • RNN层:带有128个隐藏单元和2层的RNN。
    • 全连接层:将RNN的输出映射到10个输出类别。

  1. Transformer模型:

    • 输入层:接收序列化的图像数据。
    • Transformer编码器:包含自注意力机制和前馈网络的层。
    • 全连接层:从Transformer的输出到10个类别的映射。

  1. 对抗正则卷积神经网络:
    • 输入层:接收输入的图像数据。
    • 卷积层1:32个滤波器,3x3的卷积核,步长1,填充1。
    • ReLU激活函数:应用于卷积层的输出。
    • 卷积层2:64个滤波器,3x3的卷积核,步长1,填充1。
    • ReLU激活函数
    • 全连接层1:将卷积层的输出展平后连接到128个神经元。
    • ReLU激活函数
    • 全连接层2:128到10的映射,输出层对应10个数字类别。
    • 对抗训练:在正常的训练步骤中引入通过对输入图像添加扰动得到的对抗样本。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值