-
简单的卷积神经网络(CNN):
- 输入层:接收输入的图像数据。
- 卷积层1:32个滤波器,3x3的卷积核,步长1,填充1。
- ReLU激活函数:应用于卷积层的输出。
- 卷积层2:64个滤波器,3x3的卷积核,步长1,填充1。
- ReLU激活函数。
- 全连接层1:将卷积层的输出展平后连接到128个神经元。
- ReLU激活函数。
- 全连接层2:128到10的映射,输出层对应10个数字类别。
-
简单的递归神经网络(RNN):
- 输入层:接收序列化的图像数据。
- RNN层:带有128个隐藏单元和2层的RNN。
- 全连接层:将RNN的输出映射到10个输出类别。
-
Transformer模型:
- 输入层:接收序列化的图像数据。
- Transformer编码器:包含自注意力机制和前馈网络的层。
- 全连接层:从Transformer的输出到10个类别的映射。
- 对抗正则卷积神经网络:
- 输入层:接收输入的图像数据。
- 卷积层1:32个滤波器,3x3的卷积核,步长1,填充1。
- ReLU激活函数:应用于卷积层的输出。
- 卷积层2:64个滤波器,3x3的卷积核,步长1,填充1。
- ReLU激活函数。
- 全连接层1:将卷积层的输出展平后连接到128个神经元。
- ReLU激活函数。
- 全连接层2:128到10的映射,输出层对应10个数字类别。
- 对抗训练:在正常的训练步骤中引入通过对输入图像添加扰动得到的对抗样本。