数据挖掘
文章平均质量分 80
jyshuestc
这个作者很懒,什么都没留下…
展开
-
GraphLab:新的面向机器学习的并行框架 .
1.1 GraphLab简介 在海量数据盛行的今天,大规模并行计算已经随处可见,尤其是MapReduce框架的出现,促进了并行计算在互联网海量数据处理中的广泛应用。而针对海量数据的机器学习对并行计算的性能、开发复杂度等提出了新的挑战。 机器学习的算法具有下面两个特点:数据依赖性强,运算过程各个机器之间要进行频繁的数据交换;流处理复杂,整个处理过程需要多次迭代,数据的处理条件分支多。转载 2014-01-06 14:44:56 · 820 阅读 · 0 评论 -
朴素贝叶斯—分类
一、理论基础 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为“朴素”。朴素贝叶斯分类算法属于监督学习(需要给出输入、输出)。 贝叶斯定理: 因为:P(XY)=P(Y∣X)P(X) 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。所以其基本求解原创 2014-01-06 15:13:21 · 1007 阅读 · 0 评论 -
graphlab-架构分析
摘要: Graphlab是一个高级的图并行抽象,它高效直观的表现了计算的依赖性。Mapreduce的计算采用独立的记录。Graphlab采用依赖性的存储在大的分布式data-graph中的顶点中的记录。Graphlab中的计算用vertex-program表示。它能够在每个顶点上并行执行,能够和邻居顶点相互影响。 1. Software Stack: 从图中我们可原创 2014-02-11 11:26:24 · 3178 阅读 · 0 评论