- 博客(7)
- 收藏
- 关注
原创 Dijkstra算法
算法目的: 求解到某个目的地,或从某个指定点出发到所有点的最短距离。 算法思路: 每次从 「未求出最短路径的点」中取出距离距离起点最小路径的点,以这个点为桥梁刷新「未求出最短路径的点」的距离。(CR:知乎--半亩荒唐) 前期准备: extern int N = 0, E = 0; //图形的顶点N,边E; extern int connect[102][102] = { 0 }; extern int path[102] = { 0 ...
2021-08-27 15:32:50 89
原创 DS_PTA18 图4 哈利·波特的考试
题目: 哈利·波特要考试了,他需要你的帮助。这门课学的是用魔咒将一种动物变成另一种动物的本事。例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等。反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如ahah可以将老鼠变成猫。另外,如果想把猫变成鱼,可以通过念一个直接魔咒lalala,也可以将猫变老鼠、老鼠变鱼的魔咒连起来念:hahahehe。 现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物。老师允许他自己带一只动物去考场,要考察他把这只动物变成任意一只指定动物的本事
2021-08-23 22:33:53 107
原创 Floyd算法
算法目的: 弗洛伊德算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包。 算法思路: 通过循环发现从A点到B点的距离大于A到C加上C到A,即 此时则以后者作为A到B的距离填入距离表中;同时在路径表中,将a,b位置的值填上c表示从a到B的最短距离经过C 前期准备: int N = 0, E = 0; //N表示图的点,E表示图形的边 ...
2021-08-23 22:28:38 175
原创 DS_PTA 16 六度空间
题目: 六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图1所示。 图1 六度空间示意图 “六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上
2021-08-21 18:11:36 118
原创 DS_PTA14 树9 Huffman Codes
题目: In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encounteri
2021-08-20 22:20:19 104 1
原创 DS_PTA 12 树7 堆中的路径
题目: 将一系列给定数字插入一个初始为空的小顶堆H[]。随后对任意给定的下标i,打印从H[i]到根结点的路径。 输入格式: 每组测试第1行包含2个正整数N和M(≤1000),分别是插入元素的个数、以及需要打印的路径条数。下一行给出区间[-10000, 10000]内的N个要被插入一个初始为空的小顶堆的整数。最后一行给出M个下标。 输出格式: 对输入中给出的每个下标i,在一行中输出从H[i]到根结点的路径上的数据。数字间以1个空格分隔,行末不得有多余空格。 解题思路: 本...
2021-08-19 16:09:00 88
原创 DS_PTA 11 树6 Complete Binary Search Tree
题目: A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys great
2021-08-19 15:12:55 90
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人