动态规划之回文最小分割数

本文介绍了一种动态规划的方法来求解给定字符串的最小回文分割数。通过从右向左计算动态规划数组dp,确定每个子串是否为回文串,并在所有可能的分割中找到最小次数。回文串的判断借助于一个二维数组,涵盖了单字符、双字符匹配及递归检查中间子串的情况。最后,提供了问题的实现代码。
摘要由CSDN通过智能技术生成
  • 题目:给定一个字符串str把str全部切成回文子串的最小分割数。
    例如:str = “ABA”;不需要切割,str本身就是回文串。
    str = “ACDCDCDAD” ,切割成 “A”“CDCDC”“DAD”,所以返回2。

  • 思路分析
    本题是一个动态规划的问题,定义动态规划的数组dp,dp[i]表示子串str[i…..len-1]至少需要几次切割,才能把str[i…..len-1]全部切割成回文子串,那么dp[0]就是最终的结果。
    从右往左依次计算dp[i],i的初始值为len-1,具体计算过程如下。
    1.假设j在i和len-1之间,如果str[i…j]是一个回文串,那么dp[i]的值可能是dp[j+1]+1,因为如果str[i…j]是一个回文串,那么他就可以自己作为一部分,剩下str[j+1….len-1]继续做切割,而dp[]的计算由右到左,dp[j+1]就是str[j+1…len-1]的
    最少回文分割数。
    2.根据上述思路,让j在i到len-1上做枚举。所有情况中的最小值就是dp[i]的值。
    如何判断是否是回文串呢?
    1.定义一个二维数组,bool arr[][] ,如果arr[i][j]为true,说明str[i…j]是回文串,否则不是。
    2.str[i…j]是回文串有以下三种情况。
    (1)str[i…j]有一个字符组成
    (2)str[i…j]有两个相等的字符组成
    (3)str[i+1…j-1]是回文串,也就是arr[i+1][j-1]为true,且str[i] = str[

动态规划分割回文串是一种常用的解决方案。在动态规划中,我们可以使用不同的状态定义和状态转移方程来解决这个问题。 一种常见的状态定义是使用一维dp[i],其中dp[i]表示字符串s的前i个字符形成回文子串的最少分割。这种定义可以通过判断s[j:i]是否为回文来进行状态转移,其中1 <= j <= i。具体的状态转移方程可以如下表示: - 当s[0:i]本身就是一个回文串时,不需要进行分割,即dp[i] = 0。 - 否则,我们可以遍历所有可能的分割点j,如果s[j+1:i]是回文串,那么我们可以将问题分割为两部分,即dp[i] = min(dp[i], dp[j] + 1)。 另一种状态定义是使用二维dp[i][j],其中dp[i][j]表示字符串s的前i个字符分割为j个子串的修改的最小字符。在这种定义下,我们可以使用类似的状态转移方程来进行计算。具体的状态转移方程可以如下表示: - 当i < j时,不可能将前i个字符分割为j个子串,即dp[i][j] = INF。 - 当i >= j时,我们可以遍历所有可能的分割点k,计算dp[i][j]的最小值,即dp[i][j] = min(dp[i][j], dp[k][j-1] + cost(k+1, i)),其中cost(k+1, i)表示将子串s[k+1:i]修改为回文所需的最小字符。 这两种定义和状态转移方程都可以用来解决动态规划分割回文串的问题,具体使用哪种方法取决于具体的问题要求和效率要求。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [动态规划解决回文串问题](https://blog.csdn.net/qq_37414405/article/details/111317301)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [动态规划分割回文串](https://blog.csdn.net/melody157398/article/details/119769501)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值