1. 导数
- 首先在坐标上,x和y有转换计算公式。如 y= x^2 +1 , 用x的函数表示,f(x ) = x^2 +1 。
- 导数就是这个坐标曲线在坐标某个点上的斜线率。 直线坐标的斜率就是 = YΔ/ XΔ 。 YΔ 和 XΔ 是 两点上的变化,在直线坐标上的斜率是固定一样的。
- 曲线坐标中每个点的斜率都是不一样,我们用极限的思想,计算曲线坐标在某个点上的斜率。这个过程叫,计算原函数的导数。
- 如,原函数是 f(x ) = x^2 +1 , 用f’(x) = x^2 +1 表示,计算原函数的导数。
函数在x0 点上的导数计算表示。 用极限思想,XΔ 接近于0的时候,在x0点上的斜率。
初等函数的导数函数公式:
记住:
(1/x)’ = -(1/x^2)
2.根号
X 的 n次方是a ,那X怎么表示 。 X =
a
n
\sqrt[n]{a}
na 。
如:
4
2
\sqrt[2]{4}
24 = 2 , 但是什么的平方是3、5、7等,表示不出来,只能用根号表示,
3
2
\sqrt[2]{3}
23 的平方是3 。
根号转幂函数
x
\sqrt{x}
x =
x
1
2
x^{\frac{1}{2}}
x21
2 3 2^3 23=8 , 所以可以这么说 8 3 \sqrt[3]{8} 38 = 2
3. 幂函数
x n x^n xn
4. 指数函数
a x a^x ax
3. 对数函数
log
2
8
\log_{2}8
log28 和
log
2
7
\log_{2}7
log27
2
3
2^3
23=8 , 所以可以这么说, 2为底的8的对手是什么。
log
2
8
\log_{2}8
log28 =3
综合:
8 3 \sqrt[3]{8} 38 表示, 什么的 3次方 等于 8 。2的3次方是8,计算2。
log 2 8 \log_{2}8 log28 表示, 2的几次方是 8。2的3次方是8,计算3。
log与ln
ln和log都是表示对数的符号
ln (自然对数):
以e为底的对数,记作lnN(N>0)。在自然科学中具有重要意义,特别是在生物学和物理学中。
log (常用对数):
以10为底的对数,也称为常用对数,能以任何大于0且不等于1的数为底。默认情况下,log表示以10为底的对数。
logN和lnN可以通过以下公式进行转换:
· logN = lnN / ln10
· lnN = logN / loge公式
log和ln都遵循一定的运算公式:
通用公式
· 积的对数:log(MN) = logM + logN
· 商的对数:log(M/N) = logM - logN
· 幂的对数:log(M^n) = n · logM
· 根的对数:log(√M) = 1/n · logM
log的特殊公式
· 底数转换:log(a)N = log(b)N / log(b)a(b>0且b≠1)
· 指数交换:a^(log(b)N) = N^(log(b)a)
ln的特殊公式
· ln1 = 0
· lne = 1
· ln(MN) = lnM + lnN
· ln(M/N) = lnM - lnN
· ln(M^n) = n · lnM
4. 多远函数的梯度计算
数学中倒三角符号(∇)被称为梯度算子(gradient operator)。读作“梯度”或者“nabla”。
∇f(x,y) 表示多元函数的梯度函数。
在多变量微积分中,梯度是一个向量,其方向指向函数增长最快的方向,其大小(或长度)是该方向上的函数增长速率。
多元函数的梯度计算: