04. 数学计算

1. 导数

  1. 首先在坐标上,x和y有转换计算公式。如 y= x^2 +1 , 用x的函数表示,f(x ) = x^2 +1 。
  2. 导数就是这个坐标曲线在坐标某个点上的斜线率。 直线坐标的斜率就是 = YΔ/ XΔ 。 YΔ 和 XΔ 是 两点上的变化,在直线坐标上的斜率是固定一样的。
  3. 曲线坐标中每个点的斜率都是不一样,我们用极限的思想,计算曲线坐标在某个点上的斜率。这个过程叫,计算原函数的导数。
  4. 如,原函数是 f(x ) = x^2 +1 , 用f’(x) = x^2 +1 表示,计算原函数的导数。

函数在x0 点上的导数计算表示。 用极限思想,XΔ 接近于0的时候,在x0点上的斜率。
在这里插入图片描述

初等函数的导数函数公式:
在这里插入图片描述
记住:
(1/x)’ = -(1/x^2)

在这里插入图片描述
在这里插入图片描述

2.根号

X 的 n次方是a ,那X怎么表示 。 X = a n \sqrt[n]{a} na
如: 4 2 \sqrt[2]{4} 24 = 2 , 但是什么的平方是3、5、7等,表示不出来,只能用根号表示, 3 2 \sqrt[2]{3} 23 的平方是3 。

根号转幂函数
x \sqrt{x} x = x 1 2 x^{\frac{1}{2}} x21

2 3 2^3 23=8 , 所以可以这么说 8 3 \sqrt[3]{8} 38 = 2

3. 幂函数

x n x^n xn

4. 指数函数

a x a^x ax

3. 对数函数

在这里插入图片描述
log ⁡ 2 8 \log_{2}8 log28 log ⁡ 2 7 \log_{2}7 log27

在这里插入图片描述
2 3 2^3 23=8 , 所以可以这么说, 2为底的8的对手是什么。 log ⁡ 2 8 \log_{2}8 log28 =3

综合:

8 3 \sqrt[3]{8} 38 表示, 什么的 3次方 等于 8 。2的3次方是8,计算2。

log ⁡ 2 8 \log_{2}8 log28 表示, 2的几次方是 8。2的3次方是8,计算3。

log与ln

ln和log都是表示对数的符号

ln (自然对数):
以e为底的对数,记作lnN(N>0)。在自然科学中具有重要意义,特别是在生物学和物理学中。

log (常用对数):
以10为底的对数,也称为常用对数,能以任何大于0且不等于1的数为底。默认情况下,log表示以10为底的对数。

logN和lnN可以通过以下公式进行转换:

· logN = lnN / ln10
· lnN = logN / loge

公式

log和ln都遵循一定的运算公式:

通用公式

· 积的对数:log(MN) = logM + logN

· 商的对数:log(M/N) = logM - logN

· 幂的对数:log(M^n) = n · logM

· 根的对数:log(√M) = 1/n · logM

log的特殊公式

· 底数转换:log(a)N = log(b)N / log(b)a(b>0且b≠1)

· 指数交换:a^(log(b)N) = N^(log(b)a)

ln的特殊公式

· ln1 = 0

· lne = 1

· ln(MN) = lnM + lnN

· ln(M/N) = lnM - lnN

· ln(M^n) = n · lnM

4. 多远函数的梯度计算

数学中倒三角符号(∇)被称为梯度算子(gradient operator)。读作“梯度”或者“nabla”。
∇f(x,y) 表示多元函数的梯度函数。
在多变量微积分中,梯度是一个向量,其方向指向函数增长最快的方向,其大小(或长度)是该方向上的函数增长速率

多元函数的梯度计算:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值