面经
文章平均质量分 54
scaling_heights
scaling_heights
展开
-
基础题冲刺
无原创 2022-06-04 10:03:41 · 211 阅读 · 0 评论 -
spring
答题技巧: 总:当前问题回答的是哪些具体的点 分:以1.2.3.4.5的方式分析细节去描述相关的知识点,如果有哪些点不清楚,直接忽略过去 突出一些技术名词(核心概念,接口,类,关键方法) 比重就轻:没有重点 一个问题能占用面试官多少时间?问的越多可能露馅越多 当面试官闻到一个你熟悉的点的时候,一定要尽量拖时间 1.谈谈Spring ioc的理解,原理与实现? 总: 控制反转:理论思想,原来的对象是由使用者来进行控制,有了spring之后,可以把整个对象交给spring来帮我们进行管理 ...原创 2021-08-04 23:59:15 · 142 阅读 · 0 评论 -
一致性hash
原创 2021-03-08 23:15:47 · 69 阅读 · 0 评论 -
reference
hashmap: https://blog.csdn.net/qq_42034205/article/details/90384772 https://blog.csdn.net/qq_44705904/article/details/107514353 https://blog.csdn.net/qq_38182963/article/details/78940047 数据库复习: https://chenssy.blog.csdn.net/article/details/108067749 ht.原创 2021-03-08 23:07:10 · 129 阅读 · 0 评论 -
volatile synchronized
volatile和synchronized到底啥区别? 1)volatile 与 synchronized 在处理哪些问题是相对等价的? 2)为什么说 volatile 是 synchronized 弱同步的方式? 3)volatile 除了可见性问题,还能解决什么问题? 4)二者我要如何选择使用? 都听过【天上一天,地下一年】, 假设 CPU 执行一条普通指令需要一天,那么 CPU 读写内存就得等待一年的时间。 受【木桶原理】的限制,在CPU眼里,程序的整体性能都被内存的办事效率拉低了, 为了解决这.原创 2021-03-06 23:23:04 · 85 阅读 · 0 评论 -
kafka
实时流计算中 kafka作为分布式、可分区、具有副本数日志收集中心 1.可扩展 2.高容错 3.访问速度快 4.分布式特性 Kafka中的消息以主题(Topic)为单位进行分类,主题是一个逻辑上的概念。 主题还可以细分为一个或多个分区,一个分区只属于单个主题,可以把分区称为主题分区。 同一个主题下的不同分区包含的消息是不同的,每个分区还可以有多个副本用于容灾备份。 分区在存储层面可以看作一个可追加的日志(Log)文件,消息在被追加到分区日志文件的时候都会分配一个特定的偏移量(offset)。 offse.原创 2021-03-06 19:09:50 · 128 阅读 · 0 评论 -
hashmap
一、分析hashmap之前需要先了解位运算 Java中的<< 和 >> 和 >>> 详细分析 <<表示左移移,不分正负数,低位补0; 注:以下数据类型默认为byte-8位 左移时不管正负,低位补0 正数:r = 20 << 2 20的二进制补码:0001 0100 向左移动两位后:0101 0000 结果:r = 80 负数:r = -20 << 2 -20 的二进制原.原创 2021-03-05 22:09:38 · 220 阅读 · 1 评论 -
面经
高并发技术: https://blog.csdn.net/qq_43371556/article/details/102667146#__2 高频面试题:怎么保证缓存与数据库的双写一致性? https://blog.csdn.net/hollis_chuang/article/details/98697260 私藏的实用工具/学习网站我贡献出来了: ...原创 2019-11-27 22:58:13 · 156 阅读 · 0 评论