#include <iostream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <ctime>
using namespace std;
int n,A[2000010];
int main() {
scanf("%d",&n);
for(int i = 0;i <= n;i ++) scanf("%d",&A[i]);
for(int i = 0;i <= 19;i ++) {
for(int j = 0;j <= n - 1;j ++) {
if((j >> i) % 2 == 1) {
A[j] += A[j ^ (1 << i)];
}
}
}
for(int i = 0;i <= n - 1;i ++) printf("%d\n",A[i]);
return 0;
}
原题大意:给出一个序列A,f(i) = sigma(A(j)) 其中j是i的子集(即i&j==j),数列从0开始,保证序列长度为2的整数次幂。
我们把这个想成2*2*2....的k维立方体。求一个前缀和的前缀和的前缀和的前缀和的.......的前缀和就行了。