E. Tree Reconstruction(菊花图构造)

Orz我太菜了

O r z o r z o r z O r z Orz^{{orz}_{orz}^{Orz}} OrzorzorzOrz

由 于 n 点 一 定 作 为 最 大 的 一 个 点 , 所 以 让 其 他 点 围 绕 着 n 来 建 图 由于n点一定作为最大的一个点,所以让其他点围绕着n来建图 n,n

把 所 有 作 为 过 最 大 值 的 点 作 为 叶 子 节 点 把所有作为过最大值的点作为叶子节点

如 果 叶 子 节 点 多 次 作 为 最 大 值 , 就 用 一 些 没 有 作 为 过 最 大 值 的 点 填 充 如果叶子节点多次作为最大值,就用一些没有作为过最大值的点填充 ,

也 就 是 往 n 到 叶 子 节 点 的 路 径 中 去 加 点 加 边 也就是往n到叶子节点的路径中去加点加边 n

当 然 贪 心 的 优 先 用 编 号 大 的 点 去 填 充 叶 子 节 点 大 的 编 号 当然贪心的优先用编号大的点去填充叶子节点大的编号

算 法 正 确 性 \color{Red}算法正确性

这 样 围 着 n 点 开 辟 那 么 多 路 径 , 万 一 点 数 不 够 填 充 怎 么 办 ? 这样围着n点开辟那么多路径,万一点数不够填充怎么办? n,?

这 完 全 是 多 虑 , 因 为 我 们 根 本 没 浪 费 任 何 点 去 填 充 这完全是多虑,因为我们根本没浪费任何点去填充 ,

即 使 构 造 成 一 条 链 , 一 条 路 径 也 只 能 贡 献 一 个 节 点 的 最 大 值 即使构造成一条链,一条路径也只能贡献一个节点的最大值 使,

所 以 没 有 浪 费 , 即 正 确 所以没有浪费,即正确 ,

#include <bits/stdc++.h>
using namespace std;
const int maxn=1009;
vector<int>ansl,ansr;
int x,y,s[maxn],top=0,n,a[maxn];
int main()
{
	cin >> n;
	for(int i=1;i<n;i++)
	{
		cin >> x >> y;
		if( x==n )	a[y]++;
		else if( y==n )	a[x]++;
		else
		{
			cout << "NO";
			return 0;
		}
	}
	for(int i=1;i<n;i++)
		if( !a[i] )	s[++top]=i;//不作为最大值
	for(int i=n-1;i>=1;i--)
	{
		if( !a[i] )	continue;
		a[i]--;//放在叶子节点上
		int u=n,v;
		while( a[i]-- )
		{
			v=s[top--];//拿一个最大的去填补空缺
			if( v>i )//比较大,无法填补 
			{
				cout << "NO";
				return 0;	
			} 
			ansl.push_back(u);
			ansr.push_back(v);
			u=v;
		}	
		ansl.push_back(u);
		ansr.push_back(i);
	} 
	cout << "YES" << endl;
	for(int i=0;i<n-1;i++)
		cout << ansl[i] << " " << ansr[i] << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值