CodeChef - COVERING Covering Sets(sosdp+[FWT或高妙的容斥])

VJ传送门

中文题面

题意

给定函数 F ( a ) , G ( b ) , H ( c ) F(a),G(b),H(c) F(a),G(b),H(c),分别返回 f , g , h f,g,h f,g,h数组的第 a , b , c a,b,c a,b,c项(从零起)

R [ l ] = ∑ F ( a ) ∗ G ( b ) ∗ H ( c ) R[l]=\sum F(a)*G(b)*H(c) R[l]=F(a)G(b)H(c)

其中满足 ( a ∣ b ∣ c ) & l = = l (a|b|c)\&l==l (abc)&l==l


首先我们可以用 S O S D P SOSDP SOSDP快速求 R [ l ] = ∑ a & l = = l F ( a ) R[l]=\sum\limits_{a\&l==l}F(a) R[l]=a&l==lF(a)

让我们试着来求一个 W ( i ) = ∑ ( a ∣ b ∣ c )   = = i F ( a ) ∗ G ( b ) ∗ H ( c ) W(i)=\sum\limits_{(a|b|c)\ ==i}F(a)*G(b)*H(c) W(i)=(abc) ==iF(a)G(b)H(c)

那么其实答案就是 R ( l ) = ∑ l & i = = l W ( i ) R(l)=\sum\limits_{l\&i==l}W(i) R(l)=l&i==lW(i)

然后一遍 S O S D P SOSDP SOSDP即可得出解,问题在于我们似乎无法处理出这样的 F G FG FG

哦,抱歉,说错了, W ( i ) W(i) W(i)其实是一个或卷积的形式,只需要用 F W T FWT FWT即可快速得到解^_^

#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = (1<<21),mod = 1e9+7;
int n,mx,F[N],G[N],H[N],ans;
void OR(int f[],int type)
{
	for(int mid=2,k=1;mid<=mx;mid<<=1,k<<=1)
	for(int i=0;i<mx;i+=mid )
	for(int j=0;j<k;j++)
		f[i+j+k] = ( f[i+j+k]+f[i+j]*type )%mod;
}
void mul(int a[],int b[] ){ for(int i=0;i<mx;i++)	a[i] = a[i]*b[i]%mod; }
signed main()
{
	scanf("%lld",&n);
	mx = (1<<n);
	for(int i=0;i<mx;i++)	scanf("%lld",&F[i]);
	for(int i=0;i<mx;i++)	scanf("%lld",&G[i]);
	for(int i=0;i<mx;i++)	scanf("%lld",&H[i]);
	OR(F,1); OR(G,1); mul( F,G ); OR(F,-1);
	OR(F,1); OR(H,1); mul( F,H ); OR(F,-1); 
	for(int i=0;i<n;i++)
	for(int j=mx-1;j>=0;j--)
		if( !(j&(1<<i)) )	F[j] = ( F[j]+F[j|(1<<i)] )%mod;
	for(int i=0;i<mx;i++)	ans = ( ans+F[i] )%mod;
	cout << (ans+mod)%mod;
} 

然后其实也可以不用 F W T FWT FWT

观察到求 R [ l ] = ∑ F ( a ) ∗ G ( b ) ∗ H ( c ) R[l]=\sum F(a)*G(b)*H(c) R[l]=F(a)G(b)H(c)

考虑每一个三元组 ( a , b , c ) (a,b,c) (a,b,c)的贡献,会贡献所有是 a ∣ b ∣ c a|b|c abc的子集的 l l l

但是这样太慢,所以我们考虑把 a ∣ b ∣ c a|b|c abc相等的三元组放一起算贡献

F , G , H F,G,H F,G,H都做一遍 S O S D P SOSDP SOSDP然后累乘得到 W ( i ) W(i) W(i)

现在 W ( i ) W(i) W(i)表示的是所有 a ∣ b ∣ c a|b|c abc i i i子集的权值和

为了得到 W ( i ) W(i) W(i)表示 a ∣ b ∣ c = = i a|b|c==i abc==i的权值和

我们倒着做 S O S D P SOSDP SOSDP,也就是把之前的加变成减

于是得到 W ( i ) W(i) W(i)表示 a ∣ b ∣ c a|b|c abc i i i的权值和

下面有两种计算方式,一是和上面做法一样去做一遍子集 S O S D P SOSDP SOSDP

或者容斥,因为三元组或为 x x x的贡献次数是所有 x x x的子集

所以 x x x贡献 2 d ( x ) 2^{d(x)} 2d(x)

这里的贡献包含了 x x x子集的贡献,所以可以根据 1 1 1的个数来容斥

挂个别人的代码,不想写了,思维很巧妙,做法很复杂

代码传送门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值