LCA+二分+树上差分——Luogu2680 [NOIP2015]运输计划

题面:luogu2680
真受不了。。。这么多人AC的一道题目又花了我一个晚上时间做QAQ
所以这种题目就是近年来NOIP压轴题(也不一定是压轴题)的命题趋势?
13年的货车运输,15年的运输计划,16年的天天爱跑步,所以17年会是啥?
这里写图片描述
如果是这样,NOIP考场上这种题我还能在考试时间内切掉么?


简要思路:
首先我们肯定要求的给出的计划的LCA和距离啦(这个随便你怎么求)
接下来我们二分这个答案 T ,首先我们把距离>T的路径找出来,把这条路径上每条边都加上1。然后去找边权最大的被所有> T 的路径覆盖的边,如果所有路径的距离最大值减去这条边的边权,那么这个答案T就是可行的,区间缩小即可。
为什么呢?因为如果想要所有距离小于 T ,那些比T大的计划都需要经过虫洞(显然)。所以我们就去找这些能让所有> T 的路径都经过的边来作为虫洞。当然啦,我们肯定是贪心地找到边权最大的那条边并使之成为虫洞,这样节省的时间最多。
我的具体做法:
LCA的求法我用了树链剖分(因为边有边权,其实直接倍增更方便,也更快)。对于找那条神奇的边,我一开始也是想用树剖去找,但是复杂度貌似是O(nlog3n),30W的数据不能接受。所以还是树上差分靠谱些
然后调啊调终于AC了

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iostream>
#include <ctime>
#include <map>
#include <queue>
#include <cstdlib>
#include <string>
#include <climits>
#include <set>
#include <vector>
using namespace std;
inline int read(){
    int k=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){k=k*10+ch-'0';ch=getchar();}
    return k*f;
}
struct ppap{int x,y,l,lca;}a[300010];
int nedge=0,p[600010],c[600010],nex[600010],head[600010];
int n,m,s[300010],son[300010],cnt=0,cj[300010],maxx=0,Cnt,Maxx;
int deep[300010],top[300010],fa[300010],sx[300010];
int f[300010],add[300010];
inline void sadd(int x,int y){for(;x<=n;x+=x&-x)f[x]+=y;}
inline int slca(int x){int ans=0;for(;x;x-=x&-x)ans+=f[x];return ans;}//用来优化常数的树状数组
inline void addedge(int x,int y,int z){
    p[++nedge]=y;c[nedge]=z;nex[nedge]=head[x];head[x]=nedge;
}
inline void dfs(int x,int fat,int dep){
    deep[x]=dep;fa[x]=fat;s[x]=1;
    for(int k=head[x];k;k=nex[k])if(p[k]!=fat){
        dfs(p[k],x,dep+1);s[x]+=s[p[k]];cj[p[k]]=c[k];
        if(s[son[x]]<s[p[k]])son[x]=p[k];
    }
}
inline void dfss(int x,int t){
    sx[x]=++cnt;top[x]=t;
    if(son[x])dfss(son[x],t);
    for(int k=head[x];k;k=nex[k])if(p[k]!=fa[x]&&p[k]!=son[x])dfss(p[k],p[k]);
}
inline void flca(int i){
    int x=a[i].x,y=a[i].y;
    int fx=top[x],fy=top[y],ans=0;
    while(fx!=fy){
        if(deep[fx]<deep[fy])swap(fx,fy),swap(x,y);
        ans+=slca(sx[x])-slca(sx[fx]-1);x=fa[fx];fx=top[x];
    }
    if(deep[x]>deep[y])swap(x,y);
    ans+=slca(sx[y])-slca(sx[x]);
    a[i].l=ans;a[i].lca=x;
}//链剖求LCA和距离
inline void DFS(int x){
    for(int k=head[x];k;k=nex[k])if(p[k]!=fa[x]){
        DFS(p[k]);add[x]+=add[p[k]];
    }
    if(add[x]==Cnt)Maxx=max(Maxx,cj[x]);
}
inline bool check(int x){
    Cnt=0;memset(add,0,sizeof add);
    for(int i=1;i<=m;i++)if(a[i].l>x){
        Cnt++;add[a[i].lca]-=2;add[a[i].x]++;add[a[i].y]++;//差分
    }
    Maxx=0;DFS(1);//DFS是验证
    return maxx-Maxx<=x;
}
int main()
{
    n=read();m=read();
    for(int i=1;i<n;i++){
        int x=read(),y=read(),z=read();
        addedge(x,y,z);addedge(y,x,z);
    }
    dfs(1,0,1);dfss(1,1);
    for(int i=1;i<=n;i++)sadd(sx[i],cj[i]);
    maxx=0;
    for(int i=1;i<=m;i++){
        a[i].x=read();a[i].y=read();flca(i);
        maxx=max(maxx,a[i].l);
    }
    int l=0,r=maxx,ans=maxx;
    while(l<=r){
        int mid=l+r>>1;
        if(check(mid))ans=mid,r=mid-1;
        else l=mid+1;
    }
    printf("%d",ans);
    return 0;
}

哎呀~
其实我之前看到这种脑洞+码量题的时候都已经慌掉了,事实证明看到这种题不能慌,越慌越打不出来。像这种题只要想好思路之后仔细写下去就不会有什么大问题,注意细节就可以把这种题切掉了;
还有,要相信NOIP的数据不会强到哪里去,即使标算一时调不出来,差不多对的程序交上去,也可以骗到很多很多的分。我一开始这题差分打错还有65分就是一个蛮好的证明了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值