深度学习-论文阅读
Kumuda
博客界的搬运工
展开
-
论文笔记— Identity Mappings in Deep Residual Networks
这一篇文章为上一篇ResNets提供了更加可信服的论据AuthorsKaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 都是“老熟人”了就不介绍了Abstract上篇文章中(http://blog.csdn.net/bea_tree/article/details/51735788)因residual bu转载 2017-05-23 16:55:25 · 1684 阅读 · 0 评论 -
你应该知道的9篇深度学习论文(CNNs 理解)
当时看到英文的博客,本想翻译给感兴趣的同学们看看,没想到已经有人翻译,于是进行了转载,留给自己和更多的人学习,本文仅供参考。英文博客:https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html原文网址:ht转载 2017-05-25 16:53:24 · 913 阅读 · 0 评论 -
论文笔记——Batch Normalization
Batch Normalization 学习笔记原文地址:http://blog.csdn.net/hjimce/article/details/50866313作者:hjimce一、背景意义本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:《Batch Normalization: Accelerating Deep Network Trai转载 2017-05-26 14:56:57 · 345 阅读 · 0 评论 -
感知损失(Perceptual Losses)
本文是参考文献[1]的笔记。该论文是Li Fei-Fei名下的论文。引入最近新出的图像风格转换算法,虽然效果好,但对于每一张要生成的图片,都需要初始化,然后保持CNN的参数不变,反向传播更新图像,得到最后的结果。性能问题堪忧。但是图像风格转换算法的成功,在生成图像领域,产生了一个非常重要的idea,那就是可以将卷积神经网络提取出的feature,作为目标函数的一部分,通过比转载 2017-07-06 20:21:56 · 1243 阅读 · 0 评论 -
论文笔记-《Towards Good Practices for Very Deep Two-Stream ConvNets》
原文地址:http://blog.csdn.net/lk274857347/article/details/77645586作者信息:Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao,摘要深度卷积神经网络在静止图像的目标识别取得了巨大的成功,但是在视频的行为识别领域,深度学习提升的效果并不是很显著,主要的原因有两点:相对于图像识别,视频的行为识别所使用的卷积...转载 2018-02-16 21:38:33 · 346 阅读 · 0 评论 -
论文笔记——(有源码)Real-time Action Recognition with Enhanced Motion VectorCNNs
原文地址:http://blog.csdn.net/AUTO1993/article/details/78315175行为识别阅读笔记(paper+code):Real-time Action Recognition with Enhanced Motion VectorCNNs这篇文章是发表在CVPR2016上的一篇文章,这篇文章主要是对双流法进行了改进,双流法的诟病就是采用optimal fl...转载 2018-02-16 21:40:17 · 981 阅读 · 0 评论 -
论文笔记-Two-Stream Convolutional Networks for Action Recognition in Videos
原文地址:http://blog.csdn.net/lk274857347/article/details/73559112论文贡献:提出了结合空域和时域网络的two_stream卷积网络结构。验证了即使在较小规模的训练数据集上,在多帧稠密光流上训练的卷积神经网络可以获得非常好的性能。展示了多任务学习(multiple learning),应用于不同的运动分类数据集,可以同时提升数据集的规模和检测...转载 2018-02-16 22:51:59 · 382 阅读 · 0 评论 -
Adversarial Autoencoders学习笔记
转载 2018-04-23 17:48:30 · 1314 阅读 · 0 评论 -
对抗自编码器:Adversarial Autoencoders
前一篇文章介绍了原始的GAN理论,包括后续提出的能够适用于更高分辨率的DCGAN在内,其模型本质都是训练一个生成器G,然后去不断欺骗一个也在实时更新的判别器D,虽然这个模型框架一定程度上非常好的解决了以往Generative Model需要非常多监督信息的弊端(例如Learning to Generate Chairs, Tables and Cars with Convolutional Net...转载 2018-04-23 18:20:53 · 19518 阅读 · 3 评论 -
深度学习(二十九)Batch Normalization 学习笔记
Batch Normalization 学习笔记原文地址:http://blog.csdn.net/hjimce/article/details/50866313作者:hjimce一、背景意义本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:《Batch Normalization: Accelerating Deep Network Trai转载 2017-05-23 16:53:32 · 391 阅读 · 0 评论 -
论文笔记——《Amortised MAP Inference for Image Super-Resolution》ICLR2017
雷锋网AI科技评论按:ICLR 2017 于4月24-26日在法国土伦举行,雷锋网(公众号:雷锋网)AI科技评论的编辑们也将从法国带来一线报道。近期,雷锋网也围绕会议议程及论文介绍展开一系列的覆盖和专题报道,敬请期待。图像超分辨率 (Super-Resolution, SR) 是一个不确定的逆向问题,相同的一张下采样(Downsampled)图像,进过图像超分辨率处理后,得出与原图相似的高转载 2017-05-27 20:48:06 · 1849 阅读 · 0 评论 -
神经网络梯度与归一化问题总结+highway network、ResNet的思考
这是一篇水货写的笔记,希望路过的大牛可以指出其中的错误,带蒟蒻飞啊~ 一、 梯度消失/梯度爆炸的问题首先来说说梯度消失问题产生的原因吧,虽然是已经被各大牛说烂的东西。不如先看一个简单的网络结构, 可以看到,如果输出层的值仅是输入层的值与权值矩阵W的线性组合,那么最终网络最终的输出会变成输入数据的线性组合。这样很明显没有办法模拟出非线性的情况。记得神经网转载 2017-05-25 17:32:13 · 2666 阅读 · 0 评论 -
论文笔记——《Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift》
今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他们的效果超越了人类水平,下面将分两期介绍两者的算法细节。 这次先讲Google的这篇《Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift》,主要是因为这里面的思想比较有普适性,而且转载 2017-05-26 11:41:58 · 1675 阅读 · 0 评论 -
TensorFlow之深入理解VGG\Residual Network
原文地址:http://hacker.duanshishi.com/?p=1690前言这段时间到了新公司,工作上开始研究DeepLearning以及TensorFlow,挺忙了,前段时间看了VGG和deep residual的paper,一直没有时间写,今天准备好好把这两篇相关的paper重读下。VGGnetVGG解读VGGnet是Oxfor转载 2017-06-15 09:15:32 · 4436 阅读 · 1 评论 -
TensorFlow之深入理解Fast Neural Style
原文地址:http://hacker.duanshishi.com/?p=1693 前言前面几篇文章讲述了在Computer Vision领域里面常用的模型,接下来一段时间,我会花精力来学习一些TensorFlow在Computer Vision领域的应用,主要是分析相关pape和源码,今天会来详细了解下fast neural style的相关工作,前面也有文章分析neur转载 2017-06-12 16:37:46 · 637 阅读 · 0 评论 -
CNN浅析和历年ImageNet冠军模型解析
卷积神经网络原理浅析卷积神经网络(Convolutional Neural Network,CNN)最初是为解决图像识别等问题设计的,当然其现在的应用不仅限于图像和视频,也可用于时间序列信号,比如音频信号、文本数据等。在早期的图像识别研究中,最大的挑战是如何组织特征,因为图像数据不像其他类型的数据那样可以通过人工理解来提取特征。 在股票预测等模型中,我们可以从原始数据中提取转载 2017-06-04 14:50:23 · 1164 阅读 · 0 评论 -
深度学习之图像修复
原文地址:http://blog.csdn.net/stdcoutzyx/article/details/63686825图像修复问题就是还原图像中缺失的部分。基于图像中已有信息,去还原图像中的缺失部分。从直观上看,这个问题能否解决是看情况的,还原的关键在于剩余信息的使用,剩余信息中如果存在有缺失部分信息的patch,那么剩下的问题就是从剩余信息中判断缺失部分与哪一转载 2017-06-12 15:27:47 · 1354 阅读 · 1 评论 -
看得“深”、看得“清” —— 深度学习在图像超清化的应用
原文地址:http://blog.csdn.net/stdcoutzyx/article/details/70313878#comments日复一日的人像临摹练习使得画家能够仅凭几个关键特征画出完整的人脸。同样地,我们希望机器能够通过低清图像有限的图像信息,推断出图像对应的高清细节,这就需要算法能够像画家一样“理解”图像内容。至此,传统的规则算法不堪重负,新兴的深度学习转载 2017-06-12 15:17:50 · 295 阅读 · 0 评论 -
论文笔记——CVPR 2017 Dilated Residual Networks
1. Background 这次我来介绍一篇深度网络文章《Dilated Residual Networks》,发表在CVPR 2017会议上。作者是普林斯顿大学的Fisher Yu博士等人。网络简称为DRN。 文章原文可在作者主页阅览:Fisher Yu主页 这篇文章实则是作者将何恺明(Kaiming He)博士残差网络Deep Residual Networks与转载 2017-05-23 15:08:56 · 7378 阅读 · 1 评论 -
[转]为什么说未来的深度学习是小、轻、快
转自新智元https://mp.weixin.qq.com/s/iWrROs_IH9J67idOahBsGgWhy the Future of Machine Learning is Tiny当Azeem邀请我到CogX做演讲时,他希望我能把核心集中于引导用户思考的某一个点上。前几年,我的首要任务是让人们相信,深度学习是一场真正的革命,而不仅仅是一时的风尚,目前已经有足够多的例子可以证明这个观点。...转载 2018-06-16 23:40:12 · 263 阅读 · 0 评论