次梯度下降法

当遇到如hingeloss等在特定点不可导的凸函数时,传统的梯度下降法无法应用。次梯度下降法成为一种解决方案,它在不可导点提供了一个方向,帮助优化过程继续进行。这种方法允许我们在不可导点处有一个模糊的下降方向,从而实现函数的优化。
摘要由CSDN通过智能技术生成

如果遇到不可导的凸函数怎么办?比如hinge loss,在某几个点上不可导,没法使用梯度下降。

这时候可以考虑使用次梯度下降法。

定义

求解

性质

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值