论文总结
文章平均质量分 89
开飞机的小毛驴儿
自律者自由
展开
-
A Closed Form Solution to Robust Subspace Estimation and Clustering中Lemma1中的python实现
用python实现了Lemma1,应该是正确的:参考代码如下,自己用随机生成的数据做测试,公式得到的最优解和根据C得到的最优解是相同的。# An implementation of Lemma 1 in the paper#"A Closed Form Solution to Robust Subspace Estimation and Clustering"# min||C||...原创 2020-01-24 05:55:30 · 385 阅读 · 0 评论 -
笔记:Deep Robust Encoder Through Locality Preserving Low-Rank Dictionary
转载 2019-12-22 06:28:16 · 248 阅读 · 0 评论 -
Hyperspectral Band Selection by Multitask Sparsity Puisuit
前言个人认为这是一个非常好或者说是非常新鲜的工作,作者从生物免疫的角度解释了字典的学习过程。以下内容为我自己对本文的简单翻译、理解,仅代表我个人看法,有不准确之处可以发邮件至jzwangATbjtuDOTeduDOTcn讨论交流。简介近些年来,高光谱图像相关的研究得到了学术界和工业界的广泛关注。在合适的光谱分辨率下,较大波长范围内的高光谱图像或图像块能提供有用的信息,这使得高光谱图像应原创 2017-07-18 20:33:32 · 658 阅读 · 0 评论 -
Hyperspectral image super-resolution via non-local sparse tensor factorization
发表在CVPR2017上面的一篇paper,下面是我个人对该文的一些粗略翻译、理解和体会。摘要通过将低分辨率的高光谱(LR-HSI)图像与高分辨率的多光谱(HR-MSI)图像进行融合,进而得到高分辨率的高光谱图像(HR-HSI)的过程称为高光谱超分辨率。目前大多数的高光谱图像超分辨率多基于矩阵分解的方法,即在处理将三维的高光谱图像展开成为一个矩阵。一般来说,通过展开为矩阵的形式对高光谱图像原创 2017-07-02 17:57:25 · 4323 阅读 · 3 评论 -
The Approximation of One Matrix by Another of Lower Rank
THE APPROXIMATION OF ONE MATRIX BY ANOTHER OF LOWER RANK,1936年发表 的一篇文章,基本上可以将其视为矩阵低秩近似的基石,它为传统的矩阵低秩近似提供了理论保障。下面我会对这篇文章做一个整理,其中夹杂着个人的一些理解。当然个人能力有限,若发现谬误(翻译不准确、理解有错误)之处可以发邮件至 jzwangATbjtuDOTeduDOTcn 讨论交原创 2016-08-13 10:33:27 · 1209 阅读 · 0 评论 -
Dual Low-Rank Pursuit: Learning Salient Features for Saliency Detection
前言发在IEEE Transactions on Neural Networks and Learning System上的一篇文章。发表期刊为工程技术类顶级期刊,最新IF为4.854,还是相当厉害的。文章还是挺有新意的,正文为我对这篇paper的一些理解。好文章理应好好品味。简介文章标题为:双重低秩追踪:学习显著特征用于显著性检测。从文章标题大体上就可以看出该文的一个创新点是“双重低原创 2017-03-14 15:32:11 · 1639 阅读 · 0 评论 -
Traditional Saliency Reloaded: A Good Old Model in New Shape
发在CVPR2015上的一篇文章,读起来并不是很困难,思路也比较纯粹。作者也开源了代码,在这里下载:http://pages.iai.uni-bonn.de/frintrop_simone/vocus2.html问题是,作者的代码依赖于Boost C++ Library,但是我对这个库并不是很熟悉,配置起来可能不是那么方便。所以我根据自己的理解,用Matlab重写了一下,看起来效果还可以,希望能对原创 2017-11-10 22:06:05 · 633 阅读 · 0 评论 -
Ambiguous Surface Defect Image Classification of AMOLED Displays in Smartphones
前言发表在期刊IEEE Transactions on Industrial Informatics上的文章,该期刊是工程技术类的1区期刊,top级别,接收率在15%左右。Ambiguous意思是模糊不清的,有二义性的。这篇文章研究的内容就是智能手机显示屏表面缺陷的分类,这些缺陷可能是“真”缺陷(real defect),比如显示屏表面真真切切出了一个坑;也可能是“假”缺陷(fake de原创 2016-11-12 10:59:03 · 878 阅读 · 2 评论 -
Generalized Low Rank Approximations of Matrices
前言原文为叶杰平教授的一篇paper,下面内容为我对这篇文章的一个简单翻译、理解与总结,仅代表我个人看法,可能存在理解错误等问题,欢迎发邮件至jzwangATbjtuDOTeduDotcn讨论交流。摘要这篇文章研究了矩阵低秩近似的计算问题,创新在于本文所提出的方法是对一批(而不是一个)矩阵计算低秩近似。通过将该问题形式化为一个优化问题通过最小化重构误差进行求解。据作者所知,本文所提出的原创 2017-07-25 19:50:14 · 2261 阅读 · 0 评论 -
Fast defect inspection of high-resolution and textured cylindrical lens holder surface using rsvd
原文标题为Fast defect inspection of high-resolution and textured cylindrical lens holder surface using randomized SVD,发表在Nondestructive Testing and Evaluation上,这是一个工程技术类四区的期刊,IF:0.566左右,非常一般的期刊,但是这篇文章写的还是挺原创 2016-07-25 20:22:23 · 828 阅读 · 0 评论 -
SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
SLIC超像素与前沿超像素方法的比较写在西元前这篇文献最初我转载了别人的一个翻译,但是转载过来发现一些地方显示不全,而且很多地方仅仅是一个翻译,没有作者自己的想法及评价。我无意冒犯翻译过这篇文献的作者,我只是提醒自己要有自己的观点,无论对错与否。记得电影《心灵捕手》里讽刺了一个拿着别人观点到处显摆的大学生,显然这篇文献不是我写的终归还是别人的观点,重要的是,我要求自己要对这篇文献有原创 2016-09-05 10:10:18 · 3512 阅读 · 1 评论 -
TILT:Transform Invariant Low-Rank Textures
前言淅淅沥沥的雨下了一天。一上午都没有精神,中午回宿舍睡了一个饱饱的觉,下午要沉下心来好好地写点东西,不辜负这适宜的温度。文章不太好理解,那又有什么关系呢?多花些时间就是了,真的,感受越来越强烈,有时候最慢的学习方式可能也是最快的学习方式......很多地方我也不是很理解,希望通过写博客逐字逐句地读下来加深自己的理解,同时希望博文能服务一下大众。简介传统的图像低秩近似算法,原创 2016-07-19 20:18:12 · 3957 阅读 · 7 评论 -
what are textons?
标题对应着一篇paper,链接在这里:http://idm.pku.edu.cn/staff/wangyizhou/papers/Texton_IJCV2005.pdf,但是看了半天并没有很理解,所以就从知网上搜了搜相关内容,根据知网上的介绍做一个总结,只能说是对texton特征的一个初步了解。下面内容主要来自中科院博士论文“纹理图像统计及其应用研究 向世明”,在这篇博士毕业论文中有些许对te原创 2016-07-03 15:37:10 · 1729 阅读 · 0 评论 -
Salient Object Detection via Structured Matrix Decomposition
标题是一篇关于显著对象检测的论文,内容是我关于这篇文章的一个翻译和总结。 在显著对象检测方面,低秩复原模型表现出很大的潜力。低秩表示模型,即把观测矩阵分解为一个低秩矩阵和一个稀疏矩阵,其中低秩矩阵代表图像的背景,稀疏矩阵表示图像上的显著性对象,但是低秩复原模型仍有两个主要的缺陷:1)先前的工作中总是假设稀疏矩阵中的元素是相互独立的,因此忽略了图像区域在空间和模式上的联系;2)当低秩矩阵和原创 2016-02-22 17:13:38 · 3503 阅读 · 29 评论 -
Saliency Detection by Multi-Task Sparsity Puisuit
前言这是很久之前看过的一篇文章,今晚突然想起来可能对我即将要做的工作有所启发,故重新阅读,写点收获体会。下面是我对这篇文章的一个简单翻译和理解,可能存在不准确之处,仅仅是我个人的看法。摘要这篇文章要解决的问题是在无监督的情况下做自然图像中的显著性检测。为了协同多特征用于显著性检测,本文提出了一个多任务稀疏追踪的方法。给定一幅多特征描述的图像,通过寻求连续的稀疏元素来推断其显著性图。推断原创 2017-07-06 16:43:02 · 875 阅读 · 0 评论 -
Low-rank representation with local constraint for graph construction
图构建中带有局部约束的低秩表示 摘要:近年来基于图的半监督学习得到的广泛的研究。本文提出了图构建中带有局部约束的低秩表示模型LRRLC,此模型在LRR模型的基础上整合了数据的局部信息,低秩约束捕捉数据的全局结构,因此LRRLC有能力同时捕捉到数据的全局信息和局部信息。在“相似的样本有大的相似系数”这一局部假设下引进了正则化项。在本文中所有相似性的度量同LRR模型中的一致。考虑到非负系数的原创 2016-02-29 20:11:59 · 1459 阅读 · 0 评论 -
Fabric defect inspection using prior knowledge guided least squares regression
前言这是一篇用低秩矩阵分解做纺织物缺陷检测的文章,论文修改了传统的LRR模型,将原始的混合范数替换为F范数,起了一个新名字叫先验知识指导下的最小二乘回归,本质上并无明显区别。我认为该文实际出彩的地方是构建模板参照图像上,其基本思路是,缺陷只占纺织物图像的一小部分,那么我随机在纺织物图像上取块,很大可能是取得无缺陷的图像块,利用随机取得到的块来构建参照,当做无缺陷的纺织物图像。这和传统的纺织物缺原创 2016-07-17 15:52:57 · 1597 阅读 · 1 评论 -
Segmentation Driven Low-rank Matrix Recovery for Saliency Detection
发表在13年BMVC上的一篇文章,读完感觉写的挺好的,一个关键创新点是使用了背景与边界有较长的相交线这一先验知识。下面对这篇文章进行一下简单翻译与总结。原创 2017-01-01 11:29:19 · 1647 阅读 · 11 评论 -
Foreground Estimation Based on Linear Regression Model With Fused Sparsity on Outliers
这两天仔细研究的一篇文章,基于融合了异常稀疏约束的线性回归模型对前景进行估计。我认为这篇文章写的非常好,主要有以下三点:1.语言非常的native,读起来非常的舒服;2.方法对我来说是比较新颖的,至少我是第一次看到,而且还提到了一些相关的求解优化算法,这是尤其值得学习总结的;3.对比实验充足,分析合理。我着重关注后两点,对这篇文章进行一个总结。一、简介简单地说,这篇文章基于原创 2016-09-29 14:05:45 · 1224 阅读 · 0 评论