数据结构之二叉树

树: 高效的查找与搜索语义
O(log n)–树的高度

树的基础概念

1、非线性的数据结构,根朝上,叶朝下。
2、只有根节点没有前驱节点。
3、从根节点出发分出的M个子集,彼此不能相交
4、树的边个数为X,树中节点个数n,x=n-1;
5、节点和树的“度”:
节点的度:该节点中包含子树个数称为该节点的度
树的度:树中最大节点的度为该树的度
5、叶子节点:度为0的节点
6、非叶子节点:度不为0
7、节点的层次(高度):根节点为第一层,依次类推
树的高度:当前树中节点层次最大的即为树的高度

二叉树

1、什么是二叉树:
树中节点最大的度为2的树称为二叉树
2、性质:
1、在深度为K的二叉树中,最多存在2^k -1个节点
2、在第K层最多有2^(K-1)个节点
3、由于二叉树都满足节点个数n和边长x具备:x = n-1;
推论:在度为2的节点和度为0的节点有以下关系:n0 =n2 +1;即叶子节点总比非叶子节点多一个

完全二叉树

1、什么是完全二叉树?
满二叉树缺了一个右下角。
1、在完全二叉树中不存在只有右子树没有左子树的节点
2、若存在度为1的节点,这个节点必然只有左子树,且这个节点有且仅有一个。
2、完全二叉树的编号问题
①若根节点从1开始编号
在这里插入图片描述
②若根节点从0开始编号
在这里插入图片描述

二分搜索树(BST)

1、节点的值之间有一个大小关系:左子树值<根节点值<右子树值
2、查找一个元素就是二分查找
【中序遍历】:非递减序列。

平衡二叉树

1、该树中任意一个节点的左右子树高度差<=1
2、AVL ->严格平衡BST
3、RBTree -> “黑节点”严格平衡的BST

二叉树的遍历

【遍历:按照一定顺序访问这个集合的所有元素,做到不重复、不遗漏】
1、深度优先遍历(DFS):前序遍历、中序遍历、后序遍历
【栈(数组)实现】

①递归实现前中后序遍历:

public class MyBinaryTree<E> {
    TreeBode<Character> root;

    public void build() {
        TreeBode<Character> node1 = new TreeBode('A');
        TreeBode<Character> node2 = new TreeBode('B');
        TreeBode<Character> node3 = new TreeBode('C');
        TreeBode<Character> node4 = new TreeBode('D');
        TreeBode<Character> node5 = new TreeBode('E');
        TreeBode<Character> node6 = new TreeBode('F');
        TreeBode<Character> node7 = new TreeBode('G');
        TreeBode<Character> node8 = new TreeBode('H');
        node1.left = node2;
        node1.right = node3;
        node2.left = node4;
        node2.right = node5;
        node5.left = node7;
        node7.right = node8;
        node3.right = node6;
        root = node1;
    }

    /**
     * 传入一个二叉树结点按照前序遍历
     *
     * @param root
     */
    public void preOder(TreeBode root) {
        if (root == null) {
            return;
        }
        System.out.print(root.val + " ");
        preOder(root.left);
        preOder(root.right);
    }

    /**
     * 传入一个二叉树头节点进行中序遍历输出
     *
     * @param root
     */
    public void inOder(TreeBode root) {
        if (root == null) {
            return;
        }
        inOder(root.left);
        System.out.print(root.val + " ");
        inOder(root.right);
    }

    /**
     * 传入一个二叉树头节点进行后序遍历输出
     *
     * @param root
     */
    public void postOder(TreeBode root) {
        if (root == null) {
            return;
        }
        postOder(root.left);
        postOder(root.right);
        System.out.print(root.val + " ");
    }
}

②深度优先遍历非递归写法

/**
 * 实现前序遍历的非递归写法,借助栈
 */
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> ret = new ArrayList<>();//接收和输出
        if (root == null) {
            return ret;
        }
        Deque<TreeNode> stack = new ArrayDeque<>();
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode node = stack.pop();
            ret.add(node.val);
            //因为用的栈所以先入栈右子树
            if (node.right != null) {
                stack.push(node.right);
            }
            if (node.left != null) {
                stack.push(node.left);
            }
        }
        return ret;
    }
}

/**
 * 实现二叉树中序遍历的非递归写法
 */
class Solution1 {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> ret = new ArrayList<>();
        if (root == null) {
            return ret;
        }
        Deque<TreeNode> stack = new ArrayDeque<>();
        TreeNode cur = root;
        while (cur != null || !stack.isEmpty()) {
            //1、一直向左走到空
            while (cur != null) {
                stack.push(cur);
                cur = cur.left;
            }
            //2、cur已经为空,弹出栈顶就是第一个左子树为空的节点
            cur = stack.pop();
            ret.add(cur.val);
            //继续访问右子树
            cur = cur.right;
        }
        return ret;
    }
}

在这里插入图片描述

/**
 * 实现二叉树后序遍历的非递归写法
 */
class Solution3 {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> ret = new ArrayList<>();
        if (root == null) {
            return ret;
        }
        Deque<TreeNode> stack = new ArrayDeque<>();
        TreeNode cur = root;
        TreeNode prev = null;//上一个处理完的节点
        while (cur != null || !stack.isEmpty()) {
            //1、一直向左走
            while (cur != null) {
                stack.push(cur);
                cur = cur.left;
            }
            //2、检查栈顶元素情况
            cur = stack.pop();
            if (cur.right == null || cur.right == prev) {
                //此时右子树为空或者已经处理完了,就可以添加到数组中
                ret.add(cur.val);
                //cur就是处理完的节点
                prev =cur;
                //将cur处理完后制空,否则会陷入死循环
                cur = null;
            } else {
                //此时cur的右子树不为空,且没有被处理。访问右子树
                stack.push(cur);
                cur = cur.right;
            }
        }
        return ret;
    }
}

2、广度优先遍历(BFS):层序遍历
【队列(链表)实现】

/**
     * 传入一个二叉树头节点进行层序遍历输出
     *
     * @param root
     */
    public void levelOrder(TreeBode<E> root) {
        Queue<TreeBode<E>> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            int n = queue.size();//当前层有多少个数
            for (int i = 0; i < n; i++) {
                TreeBode<E> node = queue.poll();
                System.out.print(node.val + " ");
                if (node.left != null) {
                    queue.offer(node.left);
                }
                if (node.right != null) {
                    queue.offer(node.right);
                }
            }
        }
    }

3、二叉树完全性检验:
在这里插入图片描述

public boolean isCompleteTree(TreeNode root) {
        Deque<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        boolean isSecondStep = false;
        while (!queue.isEmpty()) {
            TreeNode cur = queue.poll();
            if (!isSecondStep) {//第一阶段
                if (cur.left != null && cur.right != null) {
                    queue.offer(cur.left);
                    queue.offer(cur.right);
                } else if (cur.left != null) {
                //只没有右孩子节点
                    isSecondStep = true;
                    queue.offer(cur.left);
                } else if (cur.right != null) {
                //没有左孩子节点
                    return false;
                }else {
                //叶子节点
                    isSecondStep =true;
                }
            } else {
                //第二阶段都得是叶子节点
                if (cur.left != null || cur.right != null) {
                    return false;
                }
            }
        }
        return true;
    }

4、求二叉树最大宽度
在这里插入图片描述

public class Num662 {
    public int widthOfBinaryTree(TreeNode root) {
        if (root == null) {
            return 0;
        }
        LinkedList<TreeNode> ret = new LinkedList<>();
        int maxWidth = 0;
        ret.offer(root);
        root.val = 0;
        while (!ret.isEmpty()) {
            int count = ret.size();
            int width = ret.getLast().val - ret.getFirst().val + 1;
            for (int i = 0; i < count; i++) {
                TreeNode temp = ret.poll();
                if (temp.left != null) {
                    ret.offer(temp.left);
                    temp.left.val = temp.val * 2 + 1;
                }
                if (temp.right != null) {
                    ret.offer(temp.right);
                    temp.right.val = temp.val * 2 + 2;
                }
            }
            if (width > maxWidth) {
                maxWidth = width;
            }
        }
        return maxWidth;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值