树: 高效的查找与搜索语义
O(log n)–树的高度
树的基础概念
1、非线性的数据结构,根朝上,叶朝下。
2、只有根节点没有前驱节点。
3、从根节点出发分出的M个子集,彼此不能相交
4、树的边个数为X,树中节点个数n,x=n-1;
5、节点和树的“度”:
节点的度:该节点中包含子树个数称为该节点的度
树的度:树中最大节点的度为该树的度
5、叶子节点:度为0的节点
6、非叶子节点:度不为0
7、节点的层次(高度):根节点为第一层,依次类推
树的高度:当前树中节点层次最大的即为树的高度
二叉树
1、什么是二叉树:
树中节点最大的度为2的树称为二叉树
2、性质:
1、在深度为K的二叉树中,最多存在2^k -1个节点
2、在第K层最多有2^(K-1)个节点
3、由于二叉树都满足节点个数n和边长x具备:x = n-1;
推论:在度为2的节点和度为0的节点有以下关系:n0 =n2 +1;即叶子节点总比非叶子节点多一个
完全二叉树
1、什么是完全二叉树?
满二叉树缺了一个右下角。
1、在完全二叉树中不存在只有右子树没有左子树的节点
2、若存在度为1的节点,这个节点必然只有左子树,且这个节点有且仅有一个。
2、完全二叉树的编号问题
①若根节点从1开始编号
②若根节点从0开始编号
二分搜索树(BST)
1、节点的值之间有一个大小关系:左子树值<根节点值<右子树值
2、查找一个元素就是二分查找
【中序遍历】:非递减序列。
平衡二叉树
1、该树中任意一个节点的左右子树高度差<=1
2、AVL ->严格平衡BST
3、RBTree -> “黑节点”严格平衡的BST
二叉树的遍历
【遍历:按照一定顺序访问这个集合的所有元素,做到不重复、不遗漏】
1、深度优先遍历(DFS):前序遍历、中序遍历、后序遍历
【栈(数组)实现】
①递归实现前中后序遍历:
public class MyBinaryTree<E> {
TreeBode<Character> root;
public void build() {
TreeBode<Character> node1 = new TreeBode('A');
TreeBode<Character> node2 = new TreeBode('B');
TreeBode<Character> node3 = new TreeBode('C');
TreeBode<Character> node4 = new TreeBode('D');
TreeBode<Character> node5 = new TreeBode('E');
TreeBode<Character> node6 = new TreeBode('F');
TreeBode<Character> node7 = new TreeBode('G');
TreeBode<Character> node8 = new TreeBode('H');
node1.left = node2;
node1.right = node3;
node2.left = node4;
node2.right = node5;
node5.left = node7;
node7.right = node8;
node3.right = node6;
root = node1;
}
/**
* 传入一个二叉树结点按照前序遍历
*
* @param root
*/
public void preOder(TreeBode root) {
if (root == null) {
return;
}
System.out.print(root.val + " ");
preOder(root.left);
preOder(root.right);