基于python判断线性代数向量组是否线性相关

向量组线性相关:存在不全为0的k,使在这里插入图片描述(有非零解),至少有一个向量能由其余向量线性表示(几何意义:两向量共线、三向量共面等;代数意义:方程组有多余方程)

线性相关——在这里插入图片描述;线性无关——在这里插入图片描述

线性相关证法:

  1. 按定义转化为是否只有零解问题
  2. 矩阵秩向量的部分组

记得导包

import numpy as np
import random
import sympy
from sympy import *


## 基于python判断生成随机的线性代数向量组




```python
def setVector(n=3, m=3, minNum=-4, maxNum=4, rel=True, ram=False, returnlist=False, *args, **kwargs) -> list:
    """
    生成n个m维的向量组
    :param n: 向量的个数
    :param m: 向量的维数
    :param relevant: 向量组是否线性相关
    :param args:
    :param kwargs:
    :return: 向量组(元组)

    >>> setVector(4,4) #生成4个4维的向量
    >>> setVector(3,4)#生成3个4维的向量
    >>> setVector(4,4,rel=True)#生成3个4维的线性相关的向量
    >>> setVector(4,4,ram=True)#生成3个4维的线性相关性随机的向量

    """
    Vectors = []
    if ram == True:
        x = (random.randint(1, 3)) % 2  # 产生0到2的随机数
        if x == 1:
            rel = False
    for i in range(n):  # 依次生成一个向量,依次添加进向量组里
        if returnlist:
            s = setMat(m, 1, minNum, maxNum).tolist()
        else:
            s = setMat(m, 1, minNum, maxNum)
        Vectors.append(s)
    if rel == True:
        if not getRelevant(Vectors):
            Vectors = setVector(n, m, minNum, maxNum, rel, ram, returnlist)
    else:
        if getRelevant(Vectors):
            Vectors = setVector(n, m, minNum, maxNum, rel, ram, returnlist)

    return Vectors

基于python判断线性代数向量组是否线性相关

def getRelevant(vector, *args, **kwargs) -> bool:
    """
    判断向量组里的元素是否相关
    :param Vector: 向量组
    :param args:
    :param kwargs:
    :return: 线性相关返回True,线性无关返回False

    >>> test=setVector(3,3,rel=True)#产生3个3维的向量,相关性随机
    >>> test
    >>> getRelevant(test[0])
    >>> test1=setVector(3,3,ram=True)#产生3个3维的向量,相关性随机
    >>> test1
    >>> getRelevant(test1[0])
    >>> test1=setVector(3,3,ram=True)#产生3个3维的向量,相关性随机
    >>> test1
    >>> test3=[Matrix([[3],[1],[1],[1]]), Matrix([[3],[3],[1],[1]]), Matrix([[3],[3],[3],[1]]), Matrix([[6],[3],[1],[1]])]
    >>> getRelevant(test3)

    """
    vec1 = []
    for i in range(len(vector)):  # 将向量组转换成一个矩阵
        vec2 = np.array(vector)[i].reshape(1, -1)
        vec1.append(list(vec2[0]))
    vec1 = Matrix(vec1).T
    r = getmatRank(vec1)  # 计算矩阵的秩
    n = np.array(vec1).shape[0]  # 查看向量的个数
    if r < n:  # 线性相关
        return True
    else:  # 线性无关
        return False
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
宾夕法尼亚大学计算机和信息科学系教授 Jean Gallier 的开源书籍《Algebra, Topology, Differential Calculus, and Optimization Theory For Computer Science and Engineering》用一本书的容量解决了所有问题。这本书涵盖了计算机科学所需的线性代数、微分和最优化理论等问题,可谓详尽。近年来,计算机科学、机器人学、机器学习和数据科学已经成为技术发展的重要推力。任何查看这些领域相关论文的人都会受到一些奇怪术语的困扰,如核 PCA、岭回归、套索回归、支持向量机(SVM)、拉格朗日乘数、KKT 条件等。这些奇怪的术语背后涉及的是大量有关最优化理论的「经典」线性代数知识。那么问题来了:要想理解并用好机器学习、计算机视觉等领域的工具,你就需要打好线性代数和最优化理论的知识基础。而且,你还需要学一些概率和统计方面的东西。 很多有关机器学习的书籍都在试图解决上述问题。如果你不了解拉格朗日对偶框架,那又从何理解领回归问题的对偶变量呢?同样地,如果你没有深刻理解拉格朗日框架,又怎么可能探讨 SVM 的对偶公式呢?对这些问题避而不谈是一种省事的解决方式。如果你只是上述方法技巧的使用者,「食谱」类方法或许就足够了。但是,这种方法并不适用于那些真正想要从事研究并希望做出重大贡献的人。所以,作者认为,你还必须具有扎实的线性代数、最优化理论等方面的背景知识。这会是一个问题,因为你需要投入大量的时间和精力来学习这些领域的知识,但作者相信坚持不懈的努力总会收到丰厚的回报。这本书讲了什么?这本书的主要目的是介绍线性代数和最优化理论的基础知识以及这些知识在机器学习、机器人学、计算机视觉等领域的应用。 该书包含以下 10 卷: 1. 线性代数 2. 仿射几何和射影几何 3. 双线性形式的几何 4. 几何:PID、UFD、诺特环、张量、PID 上的模块、规范形 5. 拓扑和微分 6. 最优化理论基础 7. 线性优化 8. 非线性优化 9. 在机器学习中的应用 10. 附录

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是空空.v

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值