用python做线性规划

比如要做这道题吧,需要用到scipy库里面的函数

scipy.optimize.linprog(cA_ub=Noneb_ub=NoneA_eq=Noneb_eq=Nonebounds=Nonemethod='simplex'callback=Noneoptions=None)

直接贴代码吧

from scipy import optimize as op
import numpy as np
c=np.array([2,3,-5])
A_ub=np.array([[-2,5,-1],[1,3,1]])
B_ub=np.array([-10,12])
A_eq=np.array([[1,1,1]])
B_eq=np.array([7])
x1=(0,7)
x2=(0,7)
x3=(0,7)
res=op.linprog(-c,A_ub,B_ub,A_eq,B_eq,bounds=(x1,x2,x3))
print(res)

很容易发现,c指的应该是要求最大值的函数的系数数组,A_ub是应该是不等式未知量的系数矩阵,仔细观察的人应该发现,为什么第一行里面写的是[-2,5,-1]而不是[2,5,-1]呢,应该要与图里对应才对啊,原来这不等式指的是<=的不等式,那如果是>=呢,乘个负号就行了。A_eq就是其中等式的未知量系数矩阵了。B_ub就是不等式的右边了,B_eq就是等式右边了。bounds的话,指的就是每个未知量的范围了。我们看一下结果

     fun: -14.571428571428571
 message: 'Optimization terminated successfully.'
     nit: 2
   slack: array([3.85714286, 0.57142857, 6.42857143, 7.        , 0.        ])
  status: 0
 success: True
       x: array([6.42857143, 0.57142857, 0.        ])
重点关注的就是第一行和最后一行了,第一行是整个结果,最后一行是每个x的结果。为什么第一行是负的呢?原来这个函数其实是求最小值的,那么求最大值,怎么办呢?很简单,仔细观察的人应该发现,之前的函数里面,我写的是-c,而不是c。那么这个函数的出来的结果其实就是-c的最小值,但很明显这恰恰是c最大值的相反数。那么答案就是14.57了,以上。

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页