数据结构——二叉树(五)红黑树,哈夫曼树

七:红黑树

 

 

 

 

 

 

 

 

二叉查找树(BST)具备什么特性呢?

 

1.子树上所有结点的值均小于或等于它的根结点的值。

2.子树上所有结点的值均大于或等于它的根结点的值。

3.左、右子树也分别为二叉排序树。

 

下图中这棵树,就是一颗典型的二叉查找树:

 

 

 

 

 

 

1.查看根节点9

 

 

 

2.由于10 > 9,因此查看右孩子13

 

 

 

3.由于10 < 13,因此查看左孩子11

 

 

 

4.由于10 < 11,因此查看左孩子10,发现10正是要查找的节点:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

假设初始的二叉查找树只有三个节点,根节点值为9,左孩子值为8,右孩子值为12:

 

 

 

接下来我们依次插入如下五个节点:7,6,5,4,3。依照二叉查找树的特性,结果会变成什么样呢?

 

 

 

 

 

 

 

 

 

 

 

 

1.节点是红色或黑色。

2.根节点是黑色。

3.每个叶子节点都是黑色的空节点(NIL节点)。

4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)

5.从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

 

下图中这棵树,就是一颗典型的红黑树:

 

 

 

 

 

 

 

 

 

什么情况下会破坏红黑树的规则,什么情况下不会破坏规则呢?我们举两个简单的栗子:

 

1.向原红黑树插入值为14的新节点:

 

 

 

 

由于父节点15是黑色节点,因此这种情况并不会破坏红黑树的规则,无需做任何调整。

 

 

 

2.向原红黑树插入值为21的新节点:

 

 

 

 

由于父节点22是红色节点,因此这种情况打破了红黑树的规则4(每个红色节点的两个子节点都是黑色),必须进行调整,使之重新符合红黑树的规则。

 

 

 

 

 

 

变色:

 

为了重新符合红黑树的规则,尝试把红色节点变为黑色,或者把黑色节点变为红色。

 

下图所表示的是红黑树的一部分,需要注意节点25并非根节点。因为节点21和节点22连续出现了红色,不符合规则4,所以把节点22从红色变成黑色:

 

 

 

 

但这样并不算完,因为凭空多出的黑色节点打破了规则5,所以发生连锁反应,需要继续把节点25从黑色变成红色:

 

 

 

 

此时仍然没有结束,因为节点25和节点27又形成了两个连续的红色节点,需要继续把节点27从红色变成黑色:

 

 

 

左旋转:

 

逆时针旋转红黑树的两个节点,使得父节点被自己的右孩子取代,而自己成为自己的左孩子。说起来很怪异,大家看下图:

 

 

 

图中,身为右孩子的Y取代了X的位置,而X变成了自己的左孩子。此为左旋转。

 

 

右旋转:

 

顺时针旋转红黑树的两个节点,使得父节点被自己的左孩子取代,而自己成为自己的右孩子。大家看下图:

 

 

 

图中,身为左孩子的Y取代了X的位置,而X变成了自己的右孩子。此为右旋转。

 

 

 

 

 

 

我们以刚才插入节点21的情况为例:

 

 

 

首先,我们需要做的是变色,把节点25及其下方的节点变色:

 

 

 

此时节点17和节点25是连续的两个红色节点,那么把节点17变成黑色节点?恐怕不合适。这样一来不但打破了规则4,而且根据规则2(根节点是黑色),也不可能把节点13变成红色节点。

 

变色已无法解决问题,我们把节点13看做X,把节点17看做Y,像刚才的示意图那样进行左旋转

 

 

 

 

 

 

 

由于根节点必须是黑色节点,所以需要变色,变色结果如下:

 

 

 

 

这样就结束了吗?并没有。因为其中两条路径(17 -> 8 -> 6 -> NIL)的黑色节点个数是4,其他路径的黑色节点个数是3,不符合规则5。

 

这时候我们需要把节点13看做X,节点8看做Y,像刚才的示意图那样进行右旋转

 

 

 

 

 

 

 

 

 

最后根据规则来进行变色

 

 

 

 

如此一来,我们的红黑树变得重新符合规则。这一个例子的调整过程比较复杂,经历了如下步骤:

 

变色 -> 左旋转 -> 变色 -> 右旋转 -> 变色

 

 

 

 

 

 

 

 

 

几点说明:

 

1. 关于红黑树自平衡的调整,插入和删除节点的时候都涉及到很多种Case,由于篇幅原因无法展开来一一列举,有兴趣的朋友可以参考维基百科,里面讲的非常清晰。

 

2.漫画中红黑树调整过程的示例是一种比较复杂的情形,没太看明白的小伙伴也不必钻牛角尖,关键要懂得红黑树自平衡调整的主体思想。

 

八:哈夫曼树

1,什么是哈夫曼树?

2,如何构建哈夫曼树?

3,哈夫曼编码?

一,什么是哈夫曼树

什么是哈夫曼树呢?

哈夫曼树是一种带权路径长度最短的二叉树,也称为最优二叉树。下面用一幅图来说明。

ds48

它们的带权路径长度分别为:

图a: WPL=5*2+7*2+2*2+13*2=54

图b: WPL=5*3+2*3+7*2+13*1=48

可见,图b的带权路径长度较小,我们可以证明图b就是哈夫曼树(也称为最优二叉树)。

二,如何构建哈夫曼树

一般可以按下面步骤构建:

1,将所有左,右子树都为空的作为根节点。

2,在森林中选出两棵根节点的权值最小的树作为一棵新树的左,右子树,且置新树的附加根节点的权值为其左,右子树上根节点的权值之和。注意,左子树的权值应小于右子树的权值。

3,从森林中删除这两棵树,同时把新树加入到森林中。

4,重复2,3步骤,直到森林中只有一棵树为止,此树便是哈夫曼树。

下面是构建哈夫曼树的图解过程:

ds52

三,哈夫曼编码

利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。树中从根到每个叶子节点都有一条路径,对路径上的各分支约定指向左子树的分支表示”0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为各个叶子节点对应的字符编码,即是哈夫曼编码。

就拿上图例子来说:

A,B,C,D对应的哈夫曼编码分别为:111,10,110,0

用图说明如下:

ds50

记住,设计电文总长最短的二进制前缀编码,就是以n个字符出现的频率作为权构造一棵哈夫曼树,由哈夫曼树求得的编码就是哈夫曼编码。

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值