形象描述RNN的输入[batch_size, time_step, input_size]

本文通过形象的纸片比喻,解释了RNN(循环神经网络)中输入的结构,包括batch_size、time_step和input_size的概念。在RNN中,每个纸片代表一个时间步的句子,而一个批次内的纸片可以有前一时刻的输出作为当前时刻的输入,强调了序列信息的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

以下参考了https://www.zhihu.com/question/41949741?sort=created LSTM神经网络输入输出究竟是怎样的?
问题下 Scofield和刘大力的回答

在这里插入图片描述

在这里插入图片描述

RNN的长这个样子
在这里插入图片描述

每个纸片是一个时刻的sentence,一个batch里也有t-1时刻纸片的输出作为t时刻纸片的输入,纸片间是有顺序的

在这里插入图片描述
在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

车忻青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值